
Taking the data together—that is, the original seismic data13, the
borehole data14, the large concentration increases in the magmatic
gases CO2 and He, and the increase in 3He/heat ratio—we conclude
that the 8 June 1999 seismic swarm on Endeavour was the result of
magma movement beneath the ridge crest, and not of a purely
tectonic event. The data presented here confirm that magmatic
events have profound effects on the characteristics of hydrothermal
fluids. Magmatic activity causes transient fluxes of magmatic gases
and shifts of pressure, temperature and redox conditions in the
high-temperature reaction zone, thereby influencing fluid phase
separation and causing large changes in the Cl concentration of
hydrothermal fluids. Magmatic events can cause significant changes
in the flux of ore-forming metals to the sea floor27,30. The concen-
trations of CO2, He and H2 rise rapidly during magmatic events, but
these concentration changes are not yet well constrained. The
volatile flux during the first few months after magmatic events
clearly needs to be better evaluated, as the resulting contribution of
volatiles during this early period may rival that released by a mature
hydrothermal system during an entire year. A
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One of the fundamental questions of ecology is what controls
biodiversity. Recent theory suggests that biodiversity is con-
trolled predominantly by neutral drift of species abundances1–4.
This theory has generated considerable controversy5–12, because
it claims that many mechanisms that have long been studied by
ecologists (such as niches) have little involvement in structuring
communities. The theory predicts that the species abundance
distribution within a community should follow a zero-sum
multinomial distribution (ZSM), but this has not, so far, been
rigorously tested. Specifically, it remains to be shown that the
ZSM fits the data significantly better than reasonable null
models. Here I test whether the ZSM fits several empirical data
sets better than the lognormal distribution. It does not. Not only
does the ZSM fail to fit empirical data better than the lognormal
distribution 95% of the time, it also fails to fit empirical data
better even a majority of the time. This means that there is no
evidence that the ZSM predicts abundances better than the much
more parsimonious null hypothesis.

The unified neutral theory of biodiversity (or UNTB, hereafter
used to refer to either the theory or Hubbell’s 2001 book1) predicts
that species abundance distributions (SADs) should follow the ZSM
(see Box 1). To test whether the ZSM fits the data better than the null
lognormal hypothesis, I used two data sets. First, I used the North
American Breeding Bird Survey13–15 (BBS), for the simple reason
that it is one of the few data sets that has replicates (in this case
different sites) taken with identical sampling methodologies. Repli-
cates are important for testing statistical significance. Since the ZSM
has been applied primarily to intensively sampled data, I averaged
the BBS data over a five-year period (1996–2000). Thus, rare species
that show up only once in five years are included. I took 100
replicates by randomly selecting 100 routes that were rated to be of
high quality for all five years. As an alternative data source, I also
used the well-known Barro Colorado Island (BCI) tree data set, in

letters to nature

NATURE | VOL 422 | 24 APRIL 2003 | www.nature.com/nature 881© 2003        Nature  Publishing Group



which trees are sampled in a 50-ha plot in Panama10,16. This has the
disadvantage of providing only a single data set, and hence not
allowing an analysis of replicates. However, it is much larger
(number of individuals and species) than a given BBS route, and

is exhaustively sampled. Most importantly, it has been used exten-
sively in discussions on SADs and the ZSM1,2,10.

The lognormal and ZSM distributions were fitted to the data
using maximum-likelihood methods. Fitting the lognormal distri-
bution to the data is quite simple; one merely log-transforms the
data and then uses the usual methods for fitting the normal
distribution (using the sample mean and a bias-corrected sample
variance). Details of the estimating methods used for the ZSM
can be found in Box 1 and the Supplementary Information. Source
code is available from the author at khttp://www.brianmcgill.org/
zsmcode.htmll. Eight measures of goodness-of-fit were then calcu-
lated and compared (described in the legends of Tables 1–3). Fits for
the truncated lognormal were also calculated, but were found to
perform slightly worse than the lognormal (although better than the
ZSM in general), and are not presented. If the ZSM is better than the
lognormal in 50% of cases (50 routes), then it performs better than
the null. If it is better 95% of the time (95 out of 100 routes), then it
is statistically significantly better.

Several issues were encountered while developing the fitting
routines for the ZSM that have scientific interest and are described
here: (1) Time to equilibrium. The ZSM fitting routine generates a
‘metacommunity’ population of very large size, takes a sample of
the size of the local community, and then iterates the appropriate
equations (see page 86 of ref. 1) for a number of time steps
(individual deaths). No indication of what fixed number of time
steps is appropriate has been published. My own experiments show
that it can be large. For a local community of 1,600 individuals, it
can take 107 time steps (individual deaths) to reach equilibrium. For
a local community of 10,000 individuals, it can take 106 individual
deaths (Fig. 1). Assuming a tree mortality rate of 1% per year (most
studies find 1–2% per year under normal conditions17,18), 106 time
steps translates into 10,000 years just to reach equilibrium. Even

Box 1
Theory, testing and estimation of the ZSM

The SAD describes the relative abundances of different species within a
community (see Fig. 3 for two ways to plot this information). The SAD
nearly always shows many rare species and a few highly abundant
species. Well over two dozen different probability distributions have been
suggested as the ‘right’ SAD, with more appearing every year1,20–23. The
UNTB1 has proposed that the SAD should follow a ZSM distribution.

The UNTB predicts that the species diversity and relative abundances
of species can be explained by the neutral drift of the abundances of
different species, in direct analogy to the neutral theory of molecular
evolution24. In particular, the UNTB suggests that the number of
individuals in a community, JM, is constant, and that at each time step,
one random individual dies and is replaced either by a new species
with probability n, or by an offspring of one of the randomly selected
remaining individuals with probability 1 2 n. Then the distribution of
abundances (SAD) should be determined by the compound
parameter v ¼ 2JMn, known as the fundamental biodiversity number.
Hubbell calls this the ‘metacommunity’, and adds one further
hierarchical level, the local community. In the local community, of
population size J (much smaller than JM, but to an unspecified extent),
speciation does not occur, but when an individual dies it is replaced
by a random sample from the metacommunity with probability m, or
within the local community with probability 1 2 m, where m is the
migration probability. Technically, this lower hierarchical level is a
modified ZSM, but UNTB calls it just the ZSM, and I will follow this
convention. Thus, the UNTB predicts that the SAD will follow the ZSM,
which is parameterized by three numbers: v, J and m.

The strongest test of this hypothesis to date is in Hubbell’s recent
book (referred to as UNTB here)1, which has provided a number of
examples showing that the ZSM fits empirical data. However, the
method by which goodness-of-fit of the ZSM to the data is measured is
by visual examination (see, for example, Fig. 5.9 of the UNTB1). No
objective measure of goodness-of-fit is reported. Usually, science
demands a stronger test, such as the data fitting well by some objective
measure (for example, r2) or preferably fitting better or even statistically
significantly better than some null hypothesis25. A reasonable null
hypothesis for SADs is the lognormal distribution. Owing to arguments
based on the central limit theorem26, there are good statistical, non-
biological reasons to expect the lognormal distribution to fit SADs27. In
this paper, I test whether the ZSM fits empirical data statistically
significantly better than the lognormal.

The ZSM does not have an analytical form, so we can’t use likelihood
ratios or other analytical methods of significance28. For this reason I use a
data set with replicates (the BBS) to allow significance testing. Moreover,
fitting the ZSM distribution is quite complicated. I implement the method
described in UNTB1 (pages 289–294). Details over and above Hubbell’s
original description are found in the Supplementary Information. Briefly,
the method uses a generator function to generate one random sample
from the ZSM. If we generate many (for example, 100) samples, and
average across these samples, then we have a good estimate of the
ZSM for a given set of parameters. We can evaluate the fit for different
parameters using a generic likelihood function, and then search for the
two parameters v and m, which maximizes the observed likelihood.
The algorithm was written in C and Matlab, and highly tuned for
performance. Despite this, it takes half an hour of computation on an
Athlon 500-MHz machine to fit the BCI data. A plot of the calculated
likelihood surface can be found in the Supplementary Information. In
view of the computational intensity of this calculation, we use a very
simple hierarchical iterative method to search for the maximum
likelihood, which is adequate for this problem because of the relatively
smooth nature of the likelihood surface.

Table 1 Goodness-of-fit measures for BBS data

r2 r2 MC r2 corr. K
.............................................................................................................................................................................

Lognormal 1.00 (0.99,1) 0.98 (0.93,0.99) 0.98 (0.96,1) 0.10 (0.06,0.15)

ZSM 0.99 (0.95,1) 0.89 (0.67,0.97) 0.97 (0.92,0.99) 0.26 (0.20,0.37)

ZSM beats
lognormal

4% 4% 23% 0%

.............................................................................................................................................................................

Compares goodness-of-fit for lognormal and ZSM distributions for 100 routes from the BBS. In each
cell, the first number represents the mean across 100 routes; the numbers in parentheses represent
the 2.5 and 97.5 percentiles (similar to a 95% confidence interval). The last row indicates the
percentage of routes out of 100 where ZSM scores better than the lognormal. These four measures
of goodness-of-fit are all based on calculating the observed cumulative distribution function (CDF),
as is done in the Kolmogorov–Smirnov test. This is then compared with the theoretically predicted
CDF using three measures of r2—raw r2, mean-corrected r2 (r2 MC) and square of the Pearson
correlation r (r2 corr.)—and the traditional Kolmogorov–Smirnov statistic, K, measuring greatest
absolute vertical deviance.

Table 2 x2 goodness-of-fit measures for BBS data

x2 x2 Preston log2 bins x2 10 þ 1 bins x2 5 bins
.............................................................................................................................................................................

Lognormal 19.7 (5.2,63.7) 8.97 (2.71,17.60) 11.1 (3.6,22.9) 8.64 (1.27,34.74)

ZSM Inf. (15.9,NaN) Inf. (12.912,Inf.) 19.0 (7.6,NaN) Inf. (5.949,NaN)

ZSM – INF 7 96 95 47

ZSM 20.7 24 19 12.9

ZSM beats
lognormal

28.6% 0% 3.16% 6.38%

.............................................................................................................................................................................

As in Table 1, but for various x2 measures of goodness-of-fit based on various bin schemes. The
x2 statistic is undefined when the expected number of occurrences in a bin is zero. This causes
the Inf. (infinite or x/0) and NaN (0/0) results. Although it biases results towards the ZSM, I also
report the results for cases where Inf. and NaN results are thrown out. The number of remaining
cases out of 100 is reported in the third row, and the average x2 value for just these cases is
reported in the fourth row; the percentage of times the ZSM beats the lognormal is summarized
in the last row. The four binning schemes, from left to right, are: (1) divide the observed range into
10 bins on an arithmetic scale; (2) divide the observed range into bins on a logarithmic scale
according to Preston’s rules; (3) divide the lower 80% of the data into 10 arithmetic bins and
include the upper 20% in one bin; and (4) similar to method 1 but with only 5 bins. Methods
(2)–(4) are all attempts to ensure that the right-most bins are populated despite data that include
very few species with very high abundances.
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assuming that a local community has 100,000 individuals, it would
still take about 1,000 years. Thus, the time that the theory predicts it
will take to reach local equilibrium may in fact be longer than the
time over which environmental conditions are constant enough to
support a given equilibrium. (2) Noisy equilibrium. The local
community equilibrium is a very noisy one. Species diversities
fluctuate over a range of about 10% of total species diversity
(Fig. 1). This does not mean that the UNTB is not an equilib-
rium theory, but it is important to realize just how variable the
equilibrium is. (3) Number of parameters and stopping rules. The
methods used for generating the ZSM produce a large number of
very rare species. In all of our runs, species were produced with
abundances down to 0.01 individuals. This produced poor fits to the
empirical data (too many rare species). The obvious solution is to
truncate or stop the distribution somewhere. Looking at the figures
in the UNTB, it is clear that the method used is to stop the
distribution at the same number of species as the observed data.
It would also have been reasonable to eliminate species with an
abundance less than one. This (or any other stopping method) adds

a third, undocumented fitting parameter, which makes the ZSM less
parsimonious than it first appears to be.

This issue of the stopping method is pivotal in one of the main
claims to success of the ZSM—predicting the abundances of rare
species better than the lognormal (see figures 5.7 and 5.8, and the
associated discussion, in the UNTB1). The comparison shown in the
two figures is based on having the ZSM stop at the observed number
of species. If the ZSM is stopped where abundance is $1, then it
underpredicts the number of species. If the ZSM is not stopped,
then it badly overpredicts the number of rare species. When the
lognormal is stopped where abundance is $1, it is called the
truncated lognormal. As mentioned above, my own tests show
that the truncated lognormal fits worse than the lognormal (pre-
sumably because the truncated lognormal is right-skewed, whereas
exhaustively sampled abundance data is left-skewed19). In figures
5.7 and 5.8 of the UNTB1, Hubbell compares the stopping rule for
the ZSM that causes it to have the best possible fit with the stopping
rule for the lognormal that causes the worst possible fit (that is, the
truncated lognormal; see Fig. 2). When I compare the best ZSM
stopping rule with the best lognormal stopping rule (Fig. 2),
differences are small. Moreover, differences are also small, with
the ZSM sometimes performing worse, if we make parallel com-
parisons of untruncated ZSM with untruncated lognormal, or of
truncated ZSM with truncated lognormal. This sensitive depen-
dency of the ZSM fit on the stopping rule means that we must
examine carefully the statistical and scientific validity of stopping on
the basis of the number of species. In the rest of this paper, I use the
stopping rule giving the best fit in each case (having the same
number of species as observed data for the ZSM as was done by
Hubbell, and being untruncated for the lognormal).

The results of comparing goodness-of-fit for the BBS bird data

Table 3 Goodness-of-fit measures for the BCI tropical tree data

r2 r2 MC r2 corr. K x2 Preston log x2 x2 10 þ 1 bins x2 5 bins
...................................................................................................................................................................................................................................................................................................................................................................

Lognormal 1 0.996 0.997 0.0565 12.7 5.45 10.3 4.57
ZSM 0.998 0.979 0.994 0.154 NaN 24.6 22.8 Inf.
ZSM beats lognormal No No No No NA No No No
...................................................................................................................................................................................................................................................................................................................................................................

Goodness-of-fit measures are as in the previous two tables. Only one data set is used, so no confidence intervals are presented. The last row indicates whether the ZSM scores better than the lognormal.
NA, not applicable.

Figure 1 Approach to equilibrium of a local community. This is the lower right corner of a

standard rank-abundance plot (see Fig. 3a for a full rank-abundance plot) with abundance

on the vertical axis and rank on the horizontal axis (each point is one species; ranks 1–150

were omitted because they were identical for all nine lines; rank 1 is assigned to the most

abundant species). The three red lines represent the state of the local community as it

approaches equilibrium for 1 £ 103, 1 £ 104 and 1 £ 105 time steps (that is, individual

deaths and going from right to left, respectively). We can see that by 1 £ 105 deaths, the

system is close to equilibrium, but is still noticeably different (at least over the range of

rank 200–270). The right-most red line is closest to the source metacommunity (although

the actual theoretical metacommunity would continue as a straight line rather than

curving down). The six blue lines represent 1 £ 106, 2 £ 106, 3 £ 106, 4 £ 106,

5 £ 106 and 1 £ 107 time steps that have occurred in the local community since it

became partially isolated from the metacommunity. The blue lines are all interpreted as

being at equilibrium, as the 1 £ 106 line is left-most, the 2 £ 106 line is right-most, and

the 1 £ 107 line is in the centre. Within this noisy equilibrium, diversity drops down to

about 250 species, jumps up to about 270 species for the next recorded time period

(2 £ 106 deaths), and oscillates in between for the rest of the time. This simulation had

v ¼ 50, m ¼ 0.1 and J ¼ 20,000—close to the BCI data set.
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are summarized in Tables 1 and 2, and for the BCI tree data in
Table 3. The ZSM performs reasonably well if the only criterion is to
provide a good fit. However, when compared with the null hypoth-
esis of the lognormal, the ZSM fares poorly. The average fits for the
ZSM for all three types of r2 are lower than the lognormal, and the
ZSM beats the lognormal on only about 5–25% of the cases. It does
much worse on the K (Kolmogorov–Smirnov) statistic, with an
average K of 0.26 compared with 0.10 for the lognormal, and beats
the lognormal in no case. Interpreting the x2 results is more
complicated. The x 2 statistic is undefined when the expected
number of observations is zero. Because the ZSM distribution can
be calculated only approximately, it regularly produces expected
counts of zero. This results in either infinite x2 (x/0) or undefined
x 2 (0/0). Although such cases (especially the infinite) should
probably count against the ZSM (they do not occur for the
lognormal), I threw out all such cases and then compared the
results with the lognormal for the remaining cases. Although this
should bias the results towards the ZSM, the ZSM performs much
worse than the lognormal on all x2 measures.

The 100 BBS routes averaged 77.6 species per route (with a 95%
range of 32–105). These same routes averaged 3,875 individuals
(over five years) with a 95% range of 1,325–7,023. The parameters
for the ZSM on this data were as follows: the fundamental bio-
diversity number, v, averaged 18.46 with a 95% range of 5.9–31.9,
whereas migration probability, m, averaged 0.38 with a 95% range
of 0.048–1. Interestingly, there was a strong correlation between
species diversity, S, and the fundamental biodiversity number
(v ¼ 23.94 þ 0.289S, P , 0.0001, n ¼ 100, r2 ¼ 0.48; visual anal-
ysis of residuals indicates that untransformed linear regression is
appropriate).

The results for the BCI tree data set are similar, although we
cannot proceed to replicated comparisons against a null hypothesis,

because we have only one data set. The lognormal beats the ZSM on
all measures of goodness-of-fit. Our estimated parameters were
v ¼ 48.5 and m ¼ 0.079, resulting in an estimated curve that gave a
good fit to the data (Fig. 3). My estimated parameters are close to
the UNTB’s estimates1 of v ¼ 50 and m ¼ 0.1, and the difference is
presumably due to fitting the BCI data for a year or a cutoff in
minimum tree size that is different from that used by Hubbell (the
number of individuals is very different from what Hubbell reports).
Nonetheless, to make sure that this did not cause a poor fit, I also
calculated goodness-of-fit using Hubbell’s estimates of v ¼ 50 and
m ¼ 0.1, and it did not change the results materially (usually only in
the third significant digit).

A few cautions are in order when interpreting these results. First,
it must be concluded that estimating the parameters for the ZSM is
still an art and not an exact process, so there may be some room for
improvement. However, given that I explored many approaches and
always chose the one that made the ZSM perform best, I suspect that
any further improvements will be small compared with the degree to
which it falls short of the lognormal. Second, it should be noted that
the UNTB also makes predictions regarding species area curves and
phylogenies, which I have not addressed. Finally, it is important to
note that the success of the lognormal does not mean that commu-
nity structure is random; it simply means that community structure
is a function of several multiplicative processes (the number of
processes need not be large for the central limit theorem to produce
a shape close to lognormal).

This paper has shown that the central empirical test of the UNTB
(superior fit of the ZSM to observed abundance data; see chapter 9
of the UNTB1) is in fact not true. The ZSM does indeed fit well.
However, given the fact that the lognormal performs better, we
cannot give the UNTB any special priority over the two dozen other
theories that fit abundance data reasonably well. It is also important
to note the extent of the failure to fit better than the lognormal. By
using a data set with consistent methods (BBS) and many sites, we
were able to quantify the relative performance; the lognormal
outperforms the ZSM roughly 95–100% of the time for six of
eight measures of goodness-of-fit, and roughly 75% of the time for
the remaining two measures. Indeed, given the lower number of
parameters and the greater parsimony, we may well not wish to
favour any distribution derived from a complex theory until it is
shown to perform better than the lognormal. Moreover, the UNTB
starts with assumptions that are known to be wrong: the competi-
tive equivalence of species6,8. If the model is shown to have
predictive power despite this, then we must question whether
these competitive differences are important. But until there is a
prediction of the UNTB that is strongly (that is, compared with a
null hypothesis) and successfully tested, we have no evidence that
these factors are unimportant, and much evidence that they are
indeed significant. A
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An important issue in population biology is the dynamic inter-
action between pathogens. Interest has focused mainly on the
indirect interaction of pathogen strains, mediated by cross
immunity1–4. However, a mechanism has recently been proposed
for ‘ecological interference’ between pathogens through the
removal of individuals from the susceptible pool after an acute
infection. To explore this possibility, we have analysed and
modelled historical measles and whooping cough records. Here
we show that ecological interference is particularly strong when
fatal infections permanently remove susceptibles. Disease inter-
ference has substantial dynamical consequences, making multi-
annual outbreaks of different infections characteristically out of
phase. So, when disease prevalence is high and is associated with
significant mortality, it might be impossible to understand

epidemic patterns by studying pathogens in isolation. This new
ecological null model has important consequences for under-
standing the multi-strain dynamics of pathogens such as dengue
and echoviruses.

The possibility that epidemics of unrelated pathogens might
interact has been raised in the classical epidemiological literature5,
but has not been explained. Recently, a new mechanism has been
proposed for negative ecological interference between pathogens
through the temporary removal of susceptibles, arising from infec-
tion by a competing pathogen and the ensuing quarantine period6.
Interference should be particularly apparent in the violent recurrent
epidemics of strongly immunizing childhood infections such as
measles and whooping cough. However, recent parallel records of
the two infections in England and Wales show equivocal evidence
for interference, partly because of the relatively low pathogenicity of
the infections6. Here we test for interference in older data, collected
when measles and whooping cough were significant killers5. Because
a fatal infection involves the permanent removal of susceptibles, we
would expect the imprint of interference to be particularly strong.

We begin by exploring the predictions of simple models, based
on extensions of the classic one-disease seasonally forced SEIR
(susceptible–exposed–infectious–removed) model7–9, with two
important biological refinements (see Methods). First, the model
includes a convalescent class6, within which disease-induced deaths
can occur; and second, we model the dynamics of two diseases
simultaneously, categorizing hosts according to infection history
relative to each disease. We are interested primarily in evaluating the
dynamical impact of quarantine and disease-induced mortality on
the community of pathogens. As with single-disease models, the
dynamics of this system are determined largely by the recruitment
rate of susceptibles (that is, the population birth rate7,8,10; Fig. 1).
Very low/high per-capita birth rates result in annual epidemics, with
biennial dynamics observed for intermediate levels8. When there is a
disease-related mortality rate, r, the window of biennial behaviour
is progressively delayed, with the period-doubling bifurcation
taking place at higher birth rates (Fig. 1a). This is because high
mortality due to one infection in effect lowers the recruitment rate
of susceptibles for the ‘competing’ disease. In general, the bifur-
cation structure of the model is dictated by the infection with the
higher transmission rate—in this case, measles6. Whooping cough
epidemics, which in isolation would be rigidly annual for all
parameter combinations, now follow the same pattern as measles
(Fig. 1b–d).

When epidemics are annual because of a low/high birth rate8,
seasonal forcing causes strong positive correlation between infec-
tion outbreaks. However, given biennial epidemics, measles and
whooping cough outbreaks are negatively correlated (out of
phase)—much more so than if their dynamics were independent6.
We use this negative correlation between disease dynamics as an
indicator of potential interference in data.

We test for interference effects in case fatality reports for measles
and whooping cough from Aberdeen (1883–1900) and from 15
European cities in the years before (1904–1914) and after (1922–
1932) the First World War (Fig. 2). These data encompass large
demographic heterogeneities, both spatial (between cities) and
temporal (in the different eras). There were also systematic declines
in the measles- and whooping-cough-induced death rates between
periods before and after the war, which, along with the wide range of
birth rates, provide an excellent opportunity to test the interference
hypothesis in different regions of parameter space.

Children are typically affected by many more microparasitic
infections than just measles and whooping cough (mumps, rubella
and chickenpox within the childhood infections alone). However,
we have focused on these two infections, because interference is
likely to be most pronounced when diseases have very similar mean
ages at infection, as dictated by their basic reproductive ratio, R0

(ref. 7). Of potential childhood infections prevalent in the eras
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