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     There are many accounts of the stages through which science 
proceeds. The traditional teaching of the scientifi c method em-
phasizes hypothesis then test or multiple hypotheses and test in 
the modern hypothetico-deductive approach ( Platt, 1964 ). His-
torians of physics note the progression from data to pattern to 
theory such as found in the chain from Brahe to Kepler to New-
ton.  Wiegert (1988)  suggests that we proceed from discovery of 
new facts, to organization of facts, to mechanism. 

 But another account of scientifi c progress with some ties to 
Wiegert ’ s organization of facts emphasizes the discovery of the 
links between patterns to create unifi ed theories or theories that 
make many predictions from few assumptions (e.g.,  Lakatos, 
1978 ). Indeed, the seminal achievement of Newton was having 
one theory (inverse square law of gravitation) that explained the 
motion of the planets and the motion of bodies on earth. Men-
deleev ’ s periodic table, the quark theory making sense of a bes-
tiary of different subatomic particles, and Pasteur ’ s germ theory 
of disease all fi t this paradigm of linking together previously 
disparate phenomenon. 

 The study of biodiversity broadly defi ned to include the study 
of the abundance and distribution of many species appears to 

have hit this phase of linking and seeking to make sense of 
many patterns. For much of the 20th century, ecologists mea-
sured and provided quantitative patterns and rules that described 
biodiversity. In 1989, a distinct discipline around these patterns 
was identifi ed and named ( Brown and Maurer, 1989 ). In the last 
decade of the 20th century, several authors wrote books sum-
marizing these patterns and began to seek the underlying links 
( Brown, 1995 ;  Rosenzweig, 1995 ;  Gaston and Blackburn, 
2000 ). Then in the fi rst decade of the 21st century, a number of 
theories emerged that unifi ed the different patterns of biodiver-
sity. These theories each invoked one central driving force or 
mechanism, including stochastic drift of populations ( Bell, 
2000 ;  Hubbell, 2001 ), occupancy ( He and Legendre, 2002 ), 
Gaussian abundance across space ( McGill and Collins, 2003 ), 
generalized fractals ( Storch et al., 2008 ), and maximum entropy 
( Harte et al., 2008 ). From this central assumption, each paper 
then proceeded to show that it can explain a number of biodi-
versity patterns such as species abundance distributions and 
species – area relationships. 

 In a recent paper ( McGill, 2010a ), I noted that despite the 
fact all of these theories started from very different assump-
tions, they shared some common features including an empha-
sis on the clustering of individuals within a species and the 
highly unequal distribution of abundance between species, and 
I asserted that these few assumptions were what actually pro-
duced the links to other patterns such as the species abundance 
distribution. But I did not provide details of how. Here I go one 
step further and seek to eliminate the primary assumptions 
(such as neutral drift) and proceed directly from the two core 
assumptions of intraspecifi c clustering of individuals and highly 
uneven distribution of abundance to explain other patterns such 
as the species abundance distribution, the species – area relation-
ship and the decay of similarity with distance. Unlike my previ-
ous paper ( McGill, 2010a ), I provide explicit mathematical 
formulas. The math that links these patterns together is sam-
pling, albeit not traditional independent samples, but rather cor-
related samples due to the spatial clustering of individuals. 
Many will fi nd it disappointing that one can demonstrate that 
cherished biodiversity patterns are explained by sampling 
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a process-based defi nition remains imprecise because there are 
not precise scale breaks at which different processes dominate, 
the scales vary by organisms, and different ecologists may rea-
sonably defi ne the boundaries differently. 

 The players: S, N*, N i , s, n*, n i , O i /R i   — What are the most 
important variables to measure in biodiversity? Arguably, we 
can turn to the defi nition of ecology as  “ the study of the distri-
bution and abundance of organisms ”  ( Krebs, 1972 ;  Andrew-
artha and Birch, 1986 ). Thus variables that measure distribution 
and abundance would seem central. Here I introduce a common 
notational framework used throughout the rest of the paper 
(also see  Table 1 ). I start with the regional or   γ  -scale. This is 
assumed to cover an area denoted by  A . This area will have  S  
species and  N * individuals.  N * and  S  describe community level 
or emergent properties. One can also track facts about individ-
ual species such as the number of individuals  N i   of species  i  
within the region (where  i  ranges from 1 …  S  and  N * =   Σ    i      N i  ).  N i   
refers to the abundance across the entire region and is some-
times referred to as the global abundance of a species ( Gregory, 
2000 ;  McGill, 2003 ;  White et al., 2007 ). Typically in ecological 
communities, there is great variation in  N i   between species 
( McGill et al., 2007 ). It is often convenient to present this infor-
mation in an alternative form of  M ( j ), giving the proportion of 
species with abundance  j  (i.e., number of species with  N i   =  j  
divided by  S ). This form contains identical information as the 
 N i   but matches the probability distribution form commonly 
used to describe species abundance distributions such as log-
normal, log-series, etc. ( Fisher et al., 1943 ;  Preston, 1948 ;  Marquet 
et al., 2003 ;  McGill et al., 2007 ). Turning to the distribution of 
species, species are not found everywhere. Thus, it is also 
meaningful to study what fraction of the total area  A  is occu-
pied. There are two ways to do this, and which one is used de-
pends on the type of data collected. For one type of data, the 
percentage of total area  A  occupied,  O i  , is used and is called 
occupancy. For the other type of data, one measures the range 
size  R i  ,   which is in the same units as  A  (e.g., km 2 ).  O i   is usually 
used when the area  A  is divided into a lattice or grid and the 
scales are small relative to the geographic range of a species, 
while  R i   is used for transect data across large spatial scales. 
More details on these two types of data are given below. These 
variables are all at the regional or   γ   scale. 

( McGill and Nekola, 2010 ). However, I argue at the end of this 
paper that this fact simply provides a touchstone for determin-
ing which aspects of biodiversity patterns contain biology and 
are likely truly unique to ecology vs. those aspects that are 
probably quite general and apply to colored marbles, atoms, 
and any other entities that can be imagined to be sampled. 

 In the rest of this paper, I will (1) set the stage by describing 
the ideas of local community vs. regional pool, defi ne the vari-
ables of interest in biodiversity, and give examples of two dif-
ferent kinds of data collected in biodiversity theory; (2) list the 
biodiversity patterns ecologists have identifi ed and found to be 
general; and (3) review work describing how sampling theory 
links together and explains biodiversity patterns. 

 SETTING THE STAGE 

 The scales involved   —      One thing all the recent unifi ed theo-
ries have in common is a distinction between two scales: the 
regional pool and the local community. For much of the latter 
half of the 20th century, the focus was squarely on the local 
community ( MacArthur, 1968 ;  Tilman, 1988 ) (however impre-
cise that term may be:  Fauth et al., 1996 ). Near the end of that 
period though, there were growing calls for focus on the re-
gional pool ( Ricklefs, 1987 ;  Ricklefs and Schluter, 1993 ). The 
fi rst decade of the 21st century has seen a growing and fruitful 
emphasis on the interplay between the local and the regional 
processes ( Loreau, 2000 ;  Hubbell, 2001 ;  McGill, 2003 ;  Zillio 
and Condit, 2007 ). Four decades ago, Whittaker ( 1972 ,  1975 ) 
foreshadowed this development specifi cally in the area of bio-
diversity by making a fundamental distinction between differ-
ent kinds of biodiversity according to their spatial scale and 
denoted them from smallest to largest as   α  -,   β  -, and   γ  -diversity: 
  γ  -diversity is the biodiversity of an entire region;   α  -diversity is 
at the other extreme and describes the biodiversity at a single 
location, often known to ecologists as a  “ community ” . I fi nd 
Whittaker ’ s formulation especially useful as it highlights the 
intermediate (  β  ) scale — the processes that make local commu-
nities vary from one another. Whittaker gave a precise mathe-
matical formula relating these three types of diversity:   β   = 
  γ  /  α    −  1 (sometimes  “  − 1 ”  is omitted). Thus, if   α  -diversity is 
equal to   γ  -diversity, then   β  -diversity would be zero. However, in 
practice, there  is  variation between communities, and   β  -diversity 
is always greater than zero in natural ecosystems. 

 Can we be more precise about what exactly constitutes, for 
example, the   α  -scale? In a word, no. The   α  ,   β  ,   γ   terminology is 
inherently a relative statement (  γ   is bigger than   α  ). The single 
most important aspect is that the regional scale needs to be large 
enough to include many local communities. To go beyond just 
the relative nature of the scales, I fi nd it more useful to defi ne 
the scales not by exact measurements but by the processes 
that are dominant at each scale ( Shmida and Wilson, 1985 ; 
 Rosenzweig, 1995 ;  McGill, 2010b ). Thus, the   γ  -scale is that at 
which evolutionary processes (specifi cally speciation and 
global extinction) determine biodiversity and variation is driven 
by broad-scale gradients such as climate ( Currie, 1991 ;  O ’ Brien 
et al., 2000 ;  Hawkins et al., 2003 ;  Currie et al., 2004 ), area 
( Terborgh, 1973 ;  Rosenzweig, 1995 ), and biogeographical, his-
torical contingencies ( Latham and Ricklefs, 1993 ;  Qian and 
Ricklefs, 1999 ). In contrast,   α  -diversity is the scale at which 
processes traditionally studied in community ecology such as 
dispersal limitation, microclimate, and species interactions pre-
dominate ( Diamond, 1986 ;  Vellend and Agrawal, 2010 ). Even 

  Table  1. A list of the variables and the notation of those variables used 
in this paper. 

Category Defi nition
Regional scale 
 (upper case)

Local scale 
(lower case)

Species level No. individuals of 
species  i 

 N i   n i  

Proportion of species 
with abundance  j 

 M ( j )   μ  ( j )

Community 
level

Total no. individuals 
in area (all species)

 N *  n* 

Species richness  S  s 
Occupancy  O i  ( n i  | N i  , a / A ) na
Range size  R i  na

Defi nitional Area covered  A 
  (divided into  C  
cells in gridded 

data)

 a 

 Note:  na = not applicable.
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species is observed ( C i  ) and using  O i   =  C i  /CRange  i  . In practice, 
gridded data approaches are often used on smaller areas, and 
geospatial data are used on larger areas approaching whole con-
tinents. It is usually not practical to cover completely edge-to-
edge a whole continent (but see the aforementioned atlas 
projects). As a result in geospatial data the variables  S ,  N *,  R i  , 
and  N i   are therefore less than what they would be if we truly 
measured the entire region. Techniques for extrapolating to the 
entire region exist ( Chao, 1987 ;  Gotelli and Colwell, 2001 , 
 2011 ) but do not concern us here. If there are enough local com-
munities (i.e., a large enough sample), then the measured vari-
ables will be strongly correlated with the unknown true global 
values, and the measured values can successfully be used as 
proxies of the true values for the entire region. 

 THE PATTERNS 

 Now that the variables of interest, the scales at which they 
are measured, and the types of data used to measure these data 
are defi ned, I turn to the patterns found in these variables. It is 
fairly simple to produce a list of these patterns ( Table 2 ). These 
patterns are all well documented (in most cases in hundreds of 
papers, but always in at least dozens of papers). These patterns 
have all had signifi cant meta-analyses and review papers writ-
ten about each individual pattern and been summarized col-
lectively in several books on macroecology ( Brown, 1995 ; 
 Rosenzweig, 1995 ;  Gaston and Blackburn, 2000 ). There can be 
little doubt about the generality (dare I say universality) of most 
of these patterns. So I do not attempt to prove the generality of 
these patterns here and instead provide entry points into the 
literature. 

 These patterns tend to be rather abstract and quickly develop 
into an alphabet soup of acronyms, so rather than describe them, 
I will provide concrete examples of the patterns, using two 
well-known botanical data sets: (1) the trees of a 50-ha plot in 
Barro Colorado Island (BCI), Panama ( Condit, 1998 ;  Hubbell 
et al., 1999 ,  2005 ;  Condit et al., 2000 ;  Hubbell, 2001 ); and (2) 
the trees of the U. S. Forest Inventory Analysis (USFIA) 
( USDA, 2010 ). See  Table 3  and the legend of  Fig. 1  for more 
details. The BCI data matches the fi rst kind of data (gridded), 
while the USFIA data matches the second (isolated transects). 
Both data sets have natural defi nitions of local communities 
(1 ha for BCI, 1 site of about 0.4 ha for USFIA) and regional 
pools (the 50-ha plot for BCI, eastern North American forests for 
USFIA). Clearly, the scales are very different. It is doubtful the 
50-ha plot in BCI is large enough to even be considered a true 
regional pool in the process-defi ned sense given earlier ( Ricklefs, 
2003 ), but larger areas have not been fully sampled, and it is 
convenient and common to treat this scale as a regional pool 
( Hubbell, 2001 ;  Harte et al., 2008 ). The fact that each data set 
can be used to demonstrate each of the patterns in  Table 2 , does 
not in itself prove the generality of the patterns (the much more 
extensive studies mentioned in the previous paragraph do that). 
But on another level, the fact that I can pick two data sets more 
or less arbitrarily and then fi nd all of the expected patterns in 
those data sets is rather profound. Neither data set was seminal 
in the development of or initial hypothesizing of the patterns 
(with the possible exception of clumping in the BCI data), so it 
is not circular to fi nd the patterns in this data. Rather, it is in-
deed a strong indicator of how general these patterns are. And 
it contradicts the common assertion that ecology does not have 
any general laws. 

 At the local or   α   scale, we can imagine a parallel set of 
variables. To help with keeping scales straight, I will use 
lower case variables for the   α  -scale, and the same variables in 
upper case for the   γ  scale. First, let the area of a local commu-
nity be denoted by  a . Then the total number of species is de-
noted by  s  and the total number of individuals as  n *. Let  n i   be 
the total number of individuals in species  i  at the   α   scale [or 
  μ  ( j ) = the fraction of locally present species where  n i   =  j ]. 
There are many local communities, so denote the total number 
of local communities by  C . There is no analog of  O i  / R i   at the 
  α  -scale. 

 Note that macroecology is sometimes defi ned to address 
abundance, distribution, mass, and energy ( Brown and Maurer, 
1989 ). However, to date, there has been a signifi cant split of 
macroecology into two subdisciplines, with one discipline fo-
cusing on abundance and distribution. I call this biodiversity 
theory, and this is what is studied here. The other discipline has 
focused on mass and energy and has experienced recent excit-
ing innovation under the name of the metabolic theory of ecol-
ogy ( West et al., 1997 ;  Brown et al., 2004 ). To date, there have 
been surprisingly few links between the biodiversity and meta-
bolic subdisciplines of macroecology. Damuth ’ s energetic 
equivalence rule and the more general mass-abundance-relation 
provides one such link, but it has proven surprisingly hard to 
use this to unify the two fi elds, in part because of the large 
amount of noise and variability in the relationship ( Russo et al., 
2003 ;  White et al., 2007 ;  McGill, 2008 ). Studying abundance in 
units of biomass or energy is also promising ( Connolly et al., 
2005 ;  Morlon et al., 2008 ). But much more work is needed in 
linking the biodiversity and metabolic branches of macroecol-
ogy, and this is not the subject of this paper. 

 The data   —      Broadly, one fi nds two types of data containing 
these variables. One type of data is measured on a grid or lat-
tice. Each grid cell is a local (  α  ) community, and the entire 
square containing  C  grid cells is the regional (  γ  ) community. As 
already mentioned, usually in this case,  O i   is measured instead 
of  R i  . Also in this case,  n i   may or may not be known. One ex-
ample of this data is known as atlas data. Many countries have 
atlas projects, which record the presence or absence of a species 
on a 10 km   ×   10 km grid (e.g., Australia and Britain). Another 
example of the gridded type of data is stem-mapped data, where 
the precise geographic coordinates, size, and species of every 
individual tree is measured. One can ignore the precise spatial 
coordinate information by aggregating up to a grid placed over 
the area giving the counts  n i   of each species in each grid cell. 
The number of cells where  n i    >  0 divided by the number of cells 
 C  gives  O i  . Note that we can calculate  C i   =  CO i   giving the num-
ber of cells where the species is found. 

 The second main type of data is obtained when spatially dis-
persed transects or plots are used. Thus, transects are taken 
across the landscape, but are not directly adjacent to each other, 
leaving gaps in between the measured transects. These transects 
usually have no obvious spatial structure and may appear ran-
dom. The data are sometimes called a geospatial data set. Be-
cause of the gaps between transects, one tends to measure range 
size,  R i  , rather than occupancy,  O i  . To measure  R i  , one draws a 
bounding polygon (e.g., convex hull) around the transects 
where the species is observed and calls the area of this bound-
ing polygon the range size ( R i  ). If desired, one can also calcu-
late a value for occupancy,  O i   ̧  for geospatial transect data by 
calculating how many transects were taken inside the range of 
the species (CRange  i  ) and the number of transects where the 
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fully understood because several factors infl uencing richness are 
collinear with latitude. Specifi cally, it is known that the areas 
available in the tropics are larger ( Terborgh, 1973 ;  Rosenzweig, 
1995 ). Moreover, climate variables related to energy and water 
balance (i.e., increasing precipitation and temperature, especially 
when both occur together) tend be positively related with produc-
tivity and both  S  and  N * in trees ( O ’ Brien et al., 2000 ;  Hawkins 
et al., 2003 ) ( Fig. 2B, 2C ). Slightly different climatic factors are 
most important for other taxa ( Currie, 1991 ). Regions where the 
ability to migrate to evade glaciers was limited (e.g., Europe) also 
tend to have lower diversity ( Latham and Ricklefs, 1993 ), 
and regions with more seasonal variability have fewer species 
( MacArthur, 1975 ) ( Fig. 2D ). Our understanding of what controls 
 N * is even more limited. But broadly we know that water balance 
determines leaf area index (LAI) and thus plant height ( Walter, 
1973 ;  Gholz, 1982 ;  Woodward, 1987 ;  Stephenson, 1990 ). Leaf 
area index then drives plant size and total percent cover, which 
then are the major drivers of  N * (grasslands have higher  N * than 
forests, while deserts with bare ground have lower). So in the 
framework considered here  S  and  N * are essentially inputs deter-
mined by the environmental context broadly defi ned. 

 I turn now to two patterns at the regional (  γ  ) scale measured 
on a species-by-species basis. First,  N * is allocated across the  S  
species to give the  N i  . When one plots a histogram of the  N i  , one 
is effectively examining the  M ( j ) representation of the  N i   ( Fig. 
3A, 3D ). These allocations are highly uneven. Indeed, any his-
togram of  N i   is strongly right skewed and is sometimes called a 
hollow curve ( McGill et al., 2007 ). In any community, there are 
only a few species with high abundances ( N i  ) and a multitude of 
species with very low abundances. If abundance is plotted on a 
log scale ( Fig. 3B, 3E ), then something closer to a normal 

 Regional (  γ  ) level patterns — S and N* and its interspecifi c 
allocation to N  i  , O  i  , and R  i     —      First, I examine community pat-
terns known at the regional or   γ  -level data ( Table 2 ). Recall that 
the area  A  was arbitrarily chosen by the sample design (although 
less so in the USFIA analysis where an effort was made to defi ne 
a biogeographic province). The BCI data has  S  = 225 species and 
 N * = 21   457 individuals ( > 10 cm dbh) in 50 ha. The USFIA data 
had  S  = 123 species spread across  N * = 9412 individual trees ( > 5 
in dbh) at  C  = 226 sites (transects). Neither  S  nor  N * are directly 
comparable between the two data sets since they come from dif-
ferent sized plots. These numbers are determined by   γ  -level pro-
cesses — trade-offs between speciation and extinction as driven 
by climate, productivity, and biogeography. It is well known that 
richness  S  is highest in the tropics (latitude = 0) ( Pianka, 1989 ; 
 Mittelbach et al., 2007 ) ( Fig. 2A ). The reasons for this are not 

  Table  2. A list of the biodiversity patterns discussed and illustrated in this paper. It is unfortunate that macroecologists usually describe their central 
research phenomena by acronyms, but they do. It is even more unfortunate that the acronyms are not consistent across the literature. In this table, I have 
tried to enforce a consistent nomenclature. Acroynms ending in  “ D ”  describe the frequency distribution of a variable. Distributions are taken across 
some entity; this is denoted in the fi rst letter; in most cases here, I look at distributions of species properties across a set of species and hence start 
with S (e.g., SAD), but in one case, I look at the distribution of abundance across the local communities and hence start with C (i.e., CND). Although 
not discussed in this paper, many distributions are measured across individuals and would start with I (e.g., IMD would give the individual mass/
bodysize distribution) (also see  White et al., 2007 ). Acronyms ending in R describe a relationship (correlation or function) between two variables. I 
have consistently used N for abundance, S for species richness, O for occupancy, and R (or RS) for range size). Since the R for range size never occurs 
as the last letter and the R for relationship occurs only as the last letter, this is not ambiguous. I use A to indicate sampling extent as defi ned by area. 
Where necessary, l and g distinguish the local (  α  ) and global (regional or   γ  ) scale. I have violated the rules by using A for abundance instead of N 
in the case of the SAD because the SAD acronym is very strongly established in the literature. Likewise, three relatively lesser known patterns that 
I labeled as the NAR, ONR, and the SDR are better known as the IAR, the OAR, and DSD but have not yet gained universal recognition, so I have 
chosen to relabel these for consistency but tried to use the pre-existing acronyms parenthetically. The collector ’ s curve or rarefaction curve has not yet 
been given an acronym but fi ts well into this system as SNR, which is a new coinage. 

Scale Acronym Name Formula

Regional (  γ  ) Species – environment relation  S  =  ƒ (environment)
Abundance – environment relation  N  =  ƒ (environment)

gSAD Global species abundance distribution ~ N i   or  M ( n ) log-normal – log-series
SOD Species occupancy distribution ~ o i   U-shaped
SRSD or SRD Species range size distribution ~ R i   log-normalish
ONR Occupancy – abundance relation  o i    ∝  +   N i  
RSNR Range-size – abundance relation  R i    ∝  +  N i 
RONR Range-size – occupancy – abundance relation o i   ∝  +   R i    ∝  +  N i 

Local (  α  ) lSAD Global species abundance distribution ~ n i   or   μ  ( n ) log-normal – log-series
SNR Species – abundance relation (collector ’ s curve)  s  =  ƒ ( n *)

Beta (  β  ) SAR Species – area relation  S  =  cA z  
NAR or IAR Abundance (individuals) – area relation  n * =  a / AN *
OAR Occupancy – area relation  O i   =  ƒ ( N i  ) with  ƒ  a positive 

function
SDR or   DSD Similarity – distance relation similarity( d ) = exp( − cd)
CND Community abundance distribution ~ n j   log-normal/log-series

  Table  3. The empirical values of regional (  γ  ) variables for two example 
data sets from Barro Colorado Island, Panama (BCI) and the U. S. 
Forest Inventory Analysis (USFIA). Average values for local (  α   scale) 
communities ( n * and  s ) as well   β  -diversity are also given. 

Variable BCI USFIA

 A 50 ha (0.5 km 2 ) 300   000 km 2 
 a 1 ha ~0.4 ha
 C 50 226
 S  =   γ  225 123
 N * 21   457 9412
  *n   429.14 41.6

  s  α  90.78 6.8
  β  225/90.78 = 2.48 123/6.8 = 18.1
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ferent patterns. The distribution of ranges sizes,  R i  , or SRSD 
(species range size distribution) is again log-normal-like ( Fig. 3F, 
3G ) with many species with very small ranges and a few widely 
ranging species. Again, this appears to be a general pattern ( Gaston, 
1990 ,  2003 ;  Brown, 1995 ). However, the distribution of occupancy, 
 O i  , or SOD (species occupancy distribution) shows a bimodal dis-
tribution ( Fig. 3C ) with the very smallest and very largest levels of 
occupancy being common (effectively a U-shaped histogram). This 
is a consequence of occupancy being measured on a fi nite scale 
(0 – 1). In a certain sense, the long right tail of  R i   ( Fig. 3F ) gets 
 “ crunched ”  up and leads to a high number of species with high oc-
cupancy. This phenomenon is also known as area saturation (  Š izling 
and Storch, 2004 ). The U-shaped SOD is arguably one of the oldest 
known macroecological patterns ( Raunkiaer, 1909 ) and is found 
repeatedly ( Gaston and Kunin, 1997 ;  Gaston and He, 2011 ). 

distribution appears, although there often can still be an  “ ex-
cess ”  of the rarest species ( McGill, 2003 ). The distribution of 
the  N i   is called the global species abundance distribution 
(gSAD). The fact that the gSAD is strongly skewed and is 
roughly log-normal-like seems for now to be a general pattern 
( Gregory, 1994 ,  2000 ;  Gaston and Blackburn, 2000 ;  McGill 
and Collins, 2003 ;  McGill, 2003 ), but this is one of the more 
weakly documented patterns listed in  Table 2 , and more work is 
needed. 

 As already noted, the fact that the BCI is gridded data and the 
USFIA data are from geospatial transects requires us to measure 
distribution (i.e., spatial extent) differently so I use occupancy ( O i   = 
percentage of grid cells species is found in) for the BCI data and 
range size ( R i   = the area in square kilometers covered by the spe-
cies) for the USFIA data. In turn, the two measures show very dif-

 Fig. 1.   Two illustrative data sets used throughout the main text. (A) The data from a 50-ha plot on Barro Colorado Island (BCI) in the Panama Canal 
is one of the best-known examples of a gridded data set. Every tree  > 1 cm dbh has been surveyed and measured by the Smithsonian for several decades 
( Fig. 1A ). This plot shows the locations of individuals of the species  Jacaranda copaia  with shading showing the number of individuals in each cell (hect-
are). B) The U. S. Forest Inventory Assessment (denoted in this paper as the USFIA) is a good example of a geospatial data set. The USFIA involves four 
circular plots arranged in a triangle and totaling ca. 0.4 ha. The data used in this paper include trees  > 5 in dbh (allowing comparison with BCI) and limited 
to the forested regions in the eastern United States (all forests east of 100  °   W longitude), thereby avoiding the boreal forests and montane regions of the 
Rockies and western United States and keeping to a single biogeographic province. Every site that was on protected land and estimated to be old growth 
was used. This fi gure shows the location of each of the sites used.   
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the BCI data, for every scale between the local community and 
the regional pool, Eq. 1 seems to be an excellent ( r  2  = 0.9999) 
predictor of abundance ( Fig. 5A ). In short, abundance is purely 
extensive. This relationship between abundance ( N ) and area 
(NAR for the abundance area relationship, often known as the 
IAR) is an extremely useful relationship for moving across 
scales and also appears to be quite general ( Hubbell, 2001 ). It 
has been noted that in some special situations the NAR is not so 
simple. A more general relationship  N ( a ) =  ca z   still holds (with 
 z  = 1 being the special case of Eq. 1). On islands,  z  is often  > 1 
due to nonlinear feedback of island (or habitat patch) size ef-
fects — an island twice is big is more than twice as good. This is 
sometimes called the PIAR (patch individual area relationship 
( Pautasso and Gaston, 2006 )). Studies have also found  z   <  1 
(around 0.8) on nonpatchy environments ( Pautasso and Gaston, 
2006 ) and call this the GIAR (general IAR). However, this ap-
pears to apply at scales where habitat structure changes and the 
taxonomic group studied cannot be reasonably expected to be 
found in parts of the area studied. More work on the contrast 
between Eq. 1 and the GIAR ( z    ≈   0.8) is needed. 

 If the total abundance in a local community ( n *) is deter-
mined by Eq. 1, then how is the abundance allocated across 
species (the  n i  )? This distribution of  n i   is called the local species 
abundance distribution or lSAD. When  n * (or equivalently,  a ) 

 Local (  α  ) patterns — s and n* (and the allocation to n  i  )   —      I 
turn now to patterns in the local community ( Fig. 4 ). Physicists, 
especially in the fi eld of statistical mechanics, draw a distinc-
tion between two types of measurements based on how they 
behave when two separate regions (usually volumes of gas but 
here local communities) are combined ( McQuarrie and Allan, 
2000 ). For extensive variables, the measurement of the com-
bined system is simply the sum of the measurements on the 
separate systems. The number of molecules or the total energy 
in the system are good examples. Intensive variables combine 
as a weighted average. Temperature and density of molecules 
are examples of intensive variables. 

 The total number of individuals in a plot ( n *) behaves exten-
sively. By defi nition,  N * =   Σ   n * (where the sum is across all 
plots). Conversely (see  Fig. 5A, B ), 

   n *( a )   ≈    N * a / A  (1) 

 The approximation is necessary because there is some sto-
chastic variation. But this variation is usually fairly small (CV = 
9.9% for BCI) although it can be large when local area,  a , itself 
is small introducing more stochastic variation (CV = 54.8% 
for USFIA). In either case, the variation in  n i   appears to be dis-
tributed normally ( Fig. 4A, B ). More generally, area seems to 
be the best predictor for abundance across scales ( Fig. 5A ). In 

 Fig. 2.   A number of environmental factors appear to affect diversity in the USFIA. Data below 32  °   latitude are omitted due to the peninsula effect on 
species richness in Florida. LOESS lines are shown through the data but  r  2  and  P  values reported are from a linear regression. (A) An indirect factor affect-
ing richness is latitude ( r  2  = 0.13). (B) Mean annual precipitation ( r  2  = 0.09), (C) maximum temperature in C  °   ( r  2  = 0.12); and (D) the standard deviation 
of average monthly temperatures (a measure of seasonality) ( r  2  = 0.10) also all affect richness. Note that  P   <  10  − 6  for all four plots. These plots show much 
more variation around the trend line than is typical because of the small grain size (  ≈  0.4 ha), which results in a strong sampling effect in the USFIA data. 
Larger grain sizes (e.g., 1  °     ×   1  °  ) show much less variation and higher  r  2  (e.g.,  Currie and Paquin, 1987 ).   
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of individuals sampled ( Fig. 5B ), i.e., the function  s ( n *). If plot-
ted literally as encountered in the fi eld, this curve will be a jag-
ged stair-step curve. But in practice, the individuals are ordered 
randomly several times, and the average SNR is plotted, which 
is then smooth ( Fig. 5B ). This process is also known as rar-
efaction ( Sanders, 1968 ) and can be done either by computer 
randomization ( Sanders, 1968 ) or by an analytical formula giv-
ing the expected value and variance of  s ( n *) ( Hurlbert, 1971 ; 
 Simberloff, 1972 ). The net result is that species richness is an 
increasing, decelerating function of the number of individuals. 
Empirically, the data are often well fi t by a function of the form 
 s ( n *) =  c ( n *)  z  , where 0  <   z   < 1 and often  z    ≈   0.5 ( Siemann et al., 
1999 ) or by  s ( n *) =  c log (1 +  n *). The exact shape of s( n *) 
depends heavily on the evenness of the  n i   (i.e., the shape of the 
lSAD). Rarefaction cannot be performed accurately on pres-
ence/absence data — the abundance must be known. This is be-
cause having a few highly abundant species that are likely to be 
encountered over and over again makes the rarefaction curve 
less steep. In fact, the slope of the rarefaction curve  s ( n ) at  n  = 1 
is equal to the evenness of the community ( Olszewski, 2004 ). If 
one has a mathematical formula for the distribution of the  n i   or 
lSAD [i.e., the probability function  µ ( n )], then  s ( n *) can be de-
rived as a sampling from this distribution.  May (1975)  derives 
the analytical form of  s ( n *) for a number of different theoretical 
SADs. The log-series is  s ( n *)=  α   log (1 +  n */  α  ), where   α   here is 
Fisher ’ s   α   from the log-series ( Fisher et al., 1943 ;  May 1975 ). 

is small, there can be a fair amount of variability or stochastic 
noise in the shape of the lSAD. And because of the discrete 
nature of  n i   (you cannot have 1/2 an individual), it is common 
to fi nd many singletons in lSADs. But ignoring these details, it 
turns out the lSAD is usually quite similar to the gSAD, being 
strongly right skewed on an arithmetic scale and with no left 
skew on a log-scale ( Fig. 4E, F ). Indeed, mathematical theory 
(described in more detail later) suggests that the shape of the 
lSAD should be the same as the gSAD with just the  x -axis ( n ) 
rescaled ( Green and Plotkin, 2007 ). 

 One of the unique features of ecology is that a variable of 
central interest, species richness,  s , is neither intensive nor ex-
tensive but somewhere in-between. For BCI, if richness were 
intensive, then we would expect  s  =  S  = 225, whereas if it were 
extensive, we would expect ( s  =  S * a / A  = 4.5). Note that treating 
 s  as extensive is equivalent to assuming   β  -diversity is high (no 
species found in more than one local community), while inten-
sive is equivalent to   β  -diversity being low (all species found in 
all communities). In fact, we see an intermediate value,  s  = 90.8 
(SD = 7.0). Similarly, for USFIA, we have  s  = 6.8 (SD = 2.9), 
which is intermediate between the intensive expectation of  s  = 
123 and the extensive expectation of  s  = 0.54. This intermediate 
nature gives ecologists challenges that physicists do not face. 

 One way of describing the intermediate nature is to plot a 
collectors curve ( Pielou, 1975 ) or species – individual relation-
ship (SNR), which plots the number of species vs. the number 

 Fig. 3.   The frequency distribution of regional (  α  ) scale properties across species. (A, D) abundance (i.e., gSAD) on an arithmetic scale is highly right 
skewed; (B, E) the same data on a logarithmic scale becomes log-normal-like; (C) the distribution of occupancy (i.e., SOD) is on a fi nite (0 – 1) scale and 
U-shaped. (F) The distribution of range sizes (i.e., SRSD) is also heavily right skewed; (G) the same data on a log scale again looks log-normalish. Graphs 
A – C are for BCI; D – G are for the USFIA.   
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( s  1  +  s  2 )/2, while the Jaccard measures the number of shared 
species divided by the total species in the system. Since species 
richness is between intensive and extensive we have  s  1 , s  2   <  
number of shared species  <   s  1  +  s  2 . The problem with these in-
dices is that a species can be dominant (the most common spe-
cies) in one community and rare (only one individual) in the 
other, yet these measures ignore this. To address this limitation, 
there are also a number of measures that use the relative abun-
dance ( n i  ) of the species in the two communities including the 
Morisita – Horn and the Bray – Curtis. In practice, there are doz-
ens of different indices ( Legendre and Legendre, 1998 ;  Koleff 
et al., 2003 ;  Anderson et al., 2011 ). But once a metric is chosen, 
one can take many different pairs of plots and compare the sim-
ilarity with the distance apart,  d  ( Fig. 6A, B ). This is called the 
similarity – distance relationship (SDR), sometimes known as 
the decay of similarity with distance or DSD ( Nekola and 
White, 1999 ). Necessarily, such a plot will start with a similar-
ity = 1 at a distance of zero and will decrease with increasing 
distance, eventually reaching zero. The decrease appears to be 
fairly smooth and must asymptote to the  x -axis. Both the expo-
nential function, similarity( d ) = exp( −  d / k ), and a power law 
form, similarity( d ) = ad   −    k  , are commonly used. 

 (2) Nested  —    The original defi nition of   β  -diversity was given 
by Whittaker and was based on comparing two nested spatial 
scales, in fact the local and regional scales. One can measure 
  β  -diversity by   β   =   γ  /  α    −  1 (or in my notation   / 1jS sβ  �   ). 

As can be seen ( Fig. 5B ), the theoretical log-series SNR fi ts the 
empirical SNR (i.e., rarifi ed or Monte Carlo sampling of the 
observed  N i  ) quite well. However, if the distribution of the  n i   is 
wrong (even if still capturing the strong skewness of the data), 
then the rarefaction curve will be wrong (see the broken stick 
example in  Fig. 5B ). 

 Spatial structure and across scale (  β  -diversity) patterns   —      So 
far I have only looked at patterns at a single scale: the local (  α  ) 
or the regional (  γ  ). The one exception was the NAR or IAR, 
which did not show any changes in scale (i.e., as one increased 
area). I now turn to patterns that cut across scales. Specifi cally, 
I looked at patterns that describe community structure and di-
versity over area. This can broadly be described as the study of 
  β  -diversity ( Whittaker, 1975 ;  Koleff et al., 2003 ;  Anderson 
et al., 2011 ;  Jost et al., 2011 ). There are three common ways of 
studying   β  -diversity, which are interrelated but not identical. 

 (1) Pairwise  —    One can compare the actual content of com-
munities (which species are present and how abundant they are) 
at increasingly large distances apart. To do this, one needs a 
way to measure the similarity or difference between communi-
ties. A number of famous metrics have been devised to do this. 
Some are based only on which species are present in each com-
munity. Two well-known examples of this are the Sorensen and 
the Jaccard indices. The Sorensen index measures the number 
of shared species divided by the average number of species 

 Fig. 4.   The frequency distribution of local community variables  n *,  s  and  n i  . (A, B)  n * is roughly normal across local communities. The mean is equal 
to  N */ C  since  n * is extensive; (C, D) local richness,  s , is also roughly normal but the mean is intermediate between what an intensive and extensive variable 
would predict; (E) the local species abundance distribution (lSAD) on a logarithmic scale for one randomly chosen hectare; (F) another lSAD for one 
randomly chosen site plotted as a rank – abundance diagram ( McGill et al., 2007 ). Subfi gures A, C, E for BCI; subfi gures B, D, F for USFIA.   
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 S ( A ) =  cA z   ( Arrhenius, 1921 ;  Connor and McCoy, 1979 ; 
 Rosenzweig, 1995 ). This implies plotting log  S  vs. log  A  should 
give a straight line (log  S  = log  c  +  z  log  A ). An immediate implica-
tion if the power law form holds is that   β  -diversity is constant 
over scales. The power law is a good approximation to linear 
over several of orders of magnitude of scale ( Fig. 5C ,  r  2  = 0.98, 
 z  = 0.23), but over a very large range of scale,  z  clearly changes. 
For example, in the USFIA ( Fig. 6C ), the SAR has an infl ection 
and begins curving upward again, eventually approaching  z  = 1. 
This sigmoidal (S-shaped) curve is sometimes known as the tri-
phasic SAR, which appears to be general ( Williams, 1943 ; 
 Preston, 1960 ;  Shmida and Wilson, 1985 ;  Rosenzweig, 1995 ; 
 Hubbell, 2001 ). Even at smaller ranges of scales, there can be 
detectable variations in  z  (i.e., curvilinearities in a log-log plot, 
see  Fig. 5C ) ( Harte et al., 2009 ). There is a relationship between 
the nested (no. 2) and accumulative (no. 3) forms of   β  -diversity, 
and explicit formulas can be derived ( Koleff et al., 2003 ). 

 Although the mathematical formulas linking between the 
three forms of   β  -diversity are often not known, the three forms 
are all describing the same aspect of reality — namely, that local 
communities differ from each other and this difference in-
creases with distance. Moreover, the second and third forms of 
  β  -diversity (nested, accumulative) make it clear that   β  -diversity 

When   β   is 0, every species in the region is found in every local 
community (there is no change in species composition across 
space). When   β   =  S   −  1, then a different species is found in each 
local community. It has been suggested that   β  -diversity should 
be defi ned additively instead of multiplicatively (  β   =   γ    −    α   or 
  α   +   β   =   γ  ) ( Lande, 1996 ;  Crist et al., 2003 ;  Crist and Veech, 
2006 ). The additive form makes   β   harder than the multiplica-
tive form to interpret (  β   = 3 has very different interpretations if 
  α   = 1 or   α   = 100), but it does allow for the partitioning of diver-
sity across more than just two scales (e.g.,  Fig. 6D,  see legend 
for an explanation). 

 (3) Accumulative  —    One can imagine asking if  s  species are 
found on a plot of area  a , how much larger an area does one 
need to see  s  + 1 species, or more generally, what is the function 
 s ( A ) (the number of species given an area  A ). The function  s ( A ) 
is known as the species – area relationship or SAR ( Table 2 , 
 Figs. 5C, 6C ). The SAR is highly relevant to conservation and 
can inform questions like how many species will a reserve of a 
given size protect or what are the consequences of destroying 
part of a habitat patch. The slope of  S ( A ), i.e., the derivative of 
 S ( A ) with respect to  A  [i.e., S  ′  ( A )] is a measure of   β  -diversity. It 
is common to approximate  S ( A ) by using the power law form, 

 Fig. 5.   Plots of how variables change with area for the BCI data. (A) The abundance – area relationship or NAR (or IAR) is nearly perfectly linear 
( r  2  = 0.99992 when forced to pass through zero) and gives  N  = 427.667 A . (B) Species richness,  s , is neither intensive (horizontal) nor extensive (linearly 
increasing). It is somewhere in between. Given the NAR, we can map area directly to individuals and plot number of individuals across the top. This allows 
one to compare the species – area relationship (SAR) and the species – individual relationship (SNR). The rarifi ed curve based on observed  N i   (i.e., collectors 
curve or SNR) comes close, as does the SNR based on a theoretical log-series distribution. But if the  N i   are wrong either by assuming completely equal  N i   
or an excessively uneven broken stick lSAD, then the resulting SNR poorly fi ts the SAR. (C) The SAR is close to linear on a log-log plot ( r  2  = 0.98, 
log S = 1.99 + 0.23 log  A , giving  z  = 0.23). (D) The species – occupancy distribution (SOD) gradually shifts from the classic U-shaped histogram to all 1 ’ s 
as the grain size increases. This has been called the area saturation effect.   
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the random placement of individuals, but if this were true, then 
the number of individuals in one species in a subarea of size  a  
would be constant across the local communities with only sto-
chastic variation (specifi cally, Poisson distributed variation). 
We can study this by plotting a histogram of the abundances for 
one species across all the sites ( Fig. 7A, C ). Here we hold  i  
constant and take  n i   for each local community. This pattern has 
been studied before ( Brown et al., 1995 ;  Gaston, 2003 ;  Harte 
et al., 2008 ) but has not been given a name, so I label it the CND 
(community abundance distribution). Empirically, the CND is 
nowhere close to Poisson but is a log-normal/log-series-like 
distribution. As shown in  Fig. 7A and 7C , the data are overdis-
persed relative to a Poisson distribution having too many low 
(mostly 0) abundances and too many very high abundances in 
contrast to the greater number of intermediate abundance spe-
cies in the Poisson ( Pielou, 1977 ;  He and Gaston, 2000c ;  He 
and Legendre, 2002 ;  Harte et al., 2008 ). This signifi es that the 
processes of placing individuals in space has memory (or shows 
nonindependence or autocorrelation) — once it has placed one 
individual in a cell, it is much more likely to place another indi-
vidual in that cell. But the signature of clumping is even stron-
ger than having memory on a site by site basis; it also works 
between nearby sites ( Figs. 1A, 7B, 7D ). If one site has a zero 

is neither intensive nor extensive in statistical mechanical terms. 
A benefi t of the fi rst form of   β  -diversity (pairwise) is that it 
studies not just the accumulation of species but the loss of spe-
cies between communities, something completely ignored in 
the second and third forms. Understanding the patterns of   β  -
diversity remains an important challenge in ecology. 

 From the previous section on local (  α  ) patterns, we know 
that richness is a function of abundance (SNR), and abundance 
is a function of area (NAR or IAR, Eq. 1), so one should be able 
to combine these to calculate richness as a function of area. If 
 s ( n ) =  cn z   and  n  =  a ( N */ A ) then one has  s ( a ) =  c ( N */ A )  z a z   =  c   ′   a z   
where  c   ′   is a constant independent of  a  [ c   ′   =  c ( N */ A )  z  ], giving 
the power-law form of the species – area relationship. This 
merger describing the SAR as just a rarefaction curve converted 
to area seems to accurately describe the SAR up to the scale 
where the SAR begins to accelerate upward again at ca. 10 4  km 2  
( Fig. 6C ). 

 Spatial species level: Clumping   —      I have repeatedly empha-
sized that species richness is not intensive. Another way of say-
ing this is that individuals within a species are not spread equally 
across the whole area  A . Instead, species are found in subre-
gions of  A . One possibility is that this is just a consequence of 

 Fig. 6.   Different ways to plot   β  -diversity. (A, B) Pairwise species – distance relationship (SDR or DSD) plots for BCI and USFIA, respectively. Both 
show decreasing similarity with distance. (C) The SAR for the USFIA. When plotted over a large range of scales as here, the SAR typically is described as 
triphasic (steep increase, fl at shallow increase, then accelerating to steep increase again). (D) A decomposition of the BCI data into three nested levels. The 
lowest is 1-ha plot (within [w/in] ha), the next highest is between (bet) upland and lowland habitat (hab), and the last is the whole plot. The diversity be-
tween plots within the same habitat is extremely high and accounts for 51% of all the diversity, and diversity within a single hectare is also high with rela-
tively little additional diversity added by changes in habitat.   
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variables. Examining pairwise relationships ( Table 4A, 4B , 
 Fig. 8A, 8B ), the fi rst thing to note is that total abundance  N i   of 
a species is strongly positively correlated with other measures 
associated with species commonness such as range size ( r  = 
0.38 for USFIA) and occupancy ( r  = 0.94 for BCI). This leads 
to a suggestion of what one might think of as  “ common is com-
mon ” . This superfi cially seems to stand in contrast to the classic 
paper by  Rabinowitz and colleagues (1986) . They describe rar-
ity as occurring along three axes: small range size, low abun-
dance, or habitat specialization (patchy distribution within 
range). If one breaks each axis into two levels (common or 
rare), there are eight possible locations (2   ×   2   ×   2), only one of 
which is common in all aspects and seven of which are rare in 
at least one axis. It has been shown in birds and mammals that 
because of the positive correlations between these three factors, 
the common on all three axes and rare on all three axes are the 
most usual combinations ( Brown and Maurer, 1987 ;  Yu and 
Dobson, 2000 ).  Table 4  and  Fig. 9  suggest that  “ common is 
common ”  or what might be called a range-size – occupancy –
 abundance relationship (RONR) also holds in plants although 
possibly to a lesser degree than animals. This does not imply 
that species occur only in the extreme (all common and all rare) 
combinations, but it does say that they have a disproportion-
ate share of species. There seems to be some evolutionary or 

abundance, then nearby sites are also more likely to have a zero 
abundance, and likewise if one site has a high abundance, then 
nearby sites will be more likely to as well. In short, there is 
spatial autocorrelation. Or alternatively, the abundance is not 
spatially random, but is organized. There are a number of ways 
to formally measure this. If we know the location of each point, 
we can calculate a pair-correlation function or pcf ( Fig. 7B ), 
often denoted  g ( d ) ( Stoyan and Stoyan, 1994 ;  Condit et al., 
2000 ;  Wiegand and Moloney, 2004 ;  McGill, 2011 ). Vario-
grams, correlograms, and Moran ’ s  I  ( Fortin and Dale, 2005 ; 
 McGill, 2011 ) can be used if we don ’ t know the location of 
each individual but have abundances ( Brown et al., 1995 ; 
McGill, unpublished data). Although more measurements are 
needed, it appears to be a very general pattern that nearly all 
species are clumped in space ( Condit et al., 2000 ;  Plotkin et al., 
2002 ). Interestingly, this pattern has been found at many differ-
ent spatial scales, but we do not understand how clumping var-
ies with scale. 

 Interactions among the variables   —      So far, I have only pre-
sented univariate patterns that look at single variables at par-
ticular scales, single variables across scales and single variables 
vs. sample size (as measured by area or number of individuals). 
There has not been any examination of interrelationships among 

 Fig. 7.   Spatial structure of individuals. Individuals are spatially clumped within a species. (A) A histogram of  n i   for a single species at BCI taken across 
all local communities (i.e., 1-ha plots) called the community – abundance distribution or CND. The dashed line shows the expected Poisson distribution. The 
actual data are overdispersed (more low and high values) relative to the Poisson. (B) A pair correlation function for one species (same as  Fig. 1A ) showing 
probability of encountering a conspecifi c relative to probably of encountering other species at different distances  r  (measured in meters). Values greater 
than one (indicated by the dashed line) suggest clumping. Note that clumping occurs at all scales for which the function can be estimated. (C) is the same 
as (A) for USFIA. (D) Plot of the abundance surface for red maple from the USFIA. Abundance peaks in southern New England (with a secondary peak in 
the coastal mid-Atlantic) but extends at low abundances much further west. This has been called a peak-and-tail pattern and is typical of abundance 
surfaces.   
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age (  in   ) abundance ( Table 4 ), suggesting it may be closer to the 
mechanistic cause. It has been hypothesized that the range size 
can in fact be driven by maximum abundance ( McGill and Col-
lins, 2003 ). While important to disentangle these three abun-
dances for better understanding of mechanism, it is convenient 
that all three measures of regional/global abundance ( N i  ,   in    and 
max  n i  ) are strongly positively correlated ( r  = 0.8 – 0.9 in most 
cases in  Table 4 ), a fact only previously reported once for birds 
( McGill and Collins, 2003 ) to my knowledge. 

 The one interrelationship that is strong and that has been well 
studied is the link between occupancy and abundance (the oc-
cupancy abundance relationship or ONR in the notation of this 
paper although sometimes called the OAR). Occupancy,  O i   is 
strongly positively related to total abundance  N i  . But unlike the 
relationships between different measures of abundance and 
range size, which is just a correlation cloud, this relationship is 
tight enough to suggest fairly specifi c mathematical forms ( Fig. 
8A ).  O i   vs.  N i   with  N i   on an arithmetic scale typically produces 
a Monod (Michaelis – Menten)-like curve that saturates at  O i   = 1 
for high enough abundances, while plotting  N i   on a logarithmic 
scale often gives a sigmoidal (logistic) relationship with  O i     ≈   0 
for low abundances and  O i     ≈   1 for high abundances with a 
ramping up in between ( Hanski and Gyllenberg, 1997 ;  Gaston 
et al., 2000 ;  Holt et al., 2002 ;  Gaston and He, 2011 ). As already 
noted, there is a circularity in that  N i   must be mathematically 
linked to  O i   (Eq. 2A – C). Thus, it is common to plot  O i   vs   in    
instead, which typically reveals a similar strongly positive rela-
tionship of the same shape, but slightly less tight. If we use   in    
averaged not only over sites where present (as done above), but 
over the zeros (giving a true mean abundance across all sites), 
then a simple Poisson sampling assumption gives us a mathe-
matical formula similar to the Monod form:  O i   = 1 − exp(  in   ), or, 
since the dependency of  O i   on  i  comes only through   in    we can 
just write  O(  in   )     = 1 − exp(  in   ). In practice, this approximation 
does not work very well, because individuals are clumped rather 
than spatially random. A number of more accurate forms can all 
be subsumed ( He and Gaston, 2000b ;  He et al., 2002 ;  Holt 
et al., 2002 ;  Gaston and He, 2011 ) in the general equation: 
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 This model includes the Poisson ( k  =   ±   ∞  ,   α   =   β   = 1), the 
negative binomial distribution (  α   =   β   = 1), the logistic model 
( k  = 1) ( Hanski, 1992 ;  Hanski and Gyllenberg, 1997 ), and the 
Nachman model ( k  =   ±   ∞  ) ( Nachman, 1981 ). For a good review 
of this topic, see  Holt and colleagues (2002) . One closely re-
lated pattern is the occupancy – area relationship or OAR, which 
predicts occupancy as a function of the area sampled. Occu-
pancy ultimately increases to 100% ( O i   = 1.0) for large enough 
areas ( Fig. 5D ). This is known as the  “ area saturation effect ”  
( Storch et al., 2003 ). 

 There are at least two other relations similar to the ONR. In 
common with the species – area relationship (SAR), the OAR 
can be derived from the ONR (occupancy – abundance relation-
ship) and the NAR (abundance – area relationship). Because the 
NAR is of the form  N  =  cA , the OAR must take the same form 
as the ONR (Eq. 3) with area  a  substituted for   in    ( He and 
Gaston, 2000a ;  Gaston and He, 2011 ). A second pattern closely 
related to the ONR, is when a single population is followed 
over time, and if the population size varies widely, then an 

ecological constraint that causes these three aspects of rarity to 
covary. 

 One problem with the RONR relationship is that total abun-
dance  N i   is not independent of range size or occupancy. Indeed, if 
we let     in    be the average abundance across sites where the species 
is found (i.e., not including zeros), and let  C i   be the number of 
sites where the species is observed, and CRange  i   be the number 
of sites where measurements were taken inside the range, then 
we have: 

  CRange  i     ∝    R i    (2A) 

   C i   =  O i  CRange i   (2B) 

   N i   = in   C i  .  (2C) 

 Thus, total abundance  N i   is mathematically necessarily a 
positive function of  O i   and  R i  . Also note that in data that occurs 
on smaller spatial scales over a grid (like BCI), we have no in-
formation on total range size  R i   and CRange  i   is a constant (de-
noted by  C  where  C  = 50 in the case of BCI), so Eqs. 2A – 2C 
collapse to  N i   =   in   * O i  * C . Thus in either case, the RONR pattern 
is to some degree a mathematical necessity. 

 This mathematical component can be removed if we look at 
different measures of abundance, namely average abundance 
across sites where  n i    >  0 (  in   ) or the maximum observed abun-
dance (max  n i   =   max ij

j
n   ). While    N i   is clearly dependent on   in   , 

there is no inherent reason why   in    should be related mathemati-
cally to  O i   or  R i  . But empirically in most cases, it is still posi-
tively related, supporting the idea that there is some underlying 
biology in the RONR or common-is-common pattern. Note 
though that in at least one case ( R i   vs.   in   for the USFIA), the 
relationship is negative, showing that (1) this set of variables 
can in principle vary independently, and (2) we need more work 
on studying the measures of abundance, the RONR pattern and 
Eqs. 2A – C. Given how extreme events work, the maximum 
abundance (max  n i  ) should be a function of both mean abun-
dance   in    and the number of sites where species  i  is found ( C i  ) 
since the more samples and the higher the mean, the higher the 
extreme event (maximum). Thus mean abundance (  in   ) is more 
appropriate when seeking a variable that is independent of 
range size ( R i  ) and occupancy ( O i  ). But one should not throw 
out maximum abundance (max  n i  ) because max  n i   often has 
stronger correlations with occupancy and range size than aver-

  Table  4. Correlation coeffi cients for species properties for (A) Barro 
Colorado Island (BCI) and (B) U. S. Forest Inventory Analysis 
(USFIA). 

Variable log 10   N i  
log 10  avg 

 n i  
log 10  

max  n i   O i  
log 10  

 C i  
log 10  

Crange  i  
log 10  
 RS i  

A) BCI
log 10   N i  1.00 0.83 0.92 0.94
log 10  avg  n i  0.83 1.00 0.93 0.76
log 10  max  n i  0.92 0.93 1.00 0.85
O i 0.94 0.76 0.85 1.00
B) USFIA
log 10   N i  1.00 0.66 0.92 0.23 0.90 0.63 0.38
log 10  avg  n i  0.66 1.00 0.85 0.37 0.28 0.10  − 0.10
log 10  max  n i  0.92 0.85 1.00 0.25 0.69 0.42 0.18
 O i  0.23 0.37 0.25 1.00 0.07  − 0.48  − 0.52
log 10   C i  0.90 0.28 0.69 0.07 1.00 0.81 0.59
log 10  Crange  i  0.63 0.10 0.42  − 0.48 0.81 1.00 0.80
log 10   RS i  0.38  − 0.10 0.18  − 0.52 0.59 0.80 1.00
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 What about the slightly less parsimonious model where not 
only  N * and  S  are taken as inputs but also the log-normal-like 
distribution of  N i   [or equiavelntly  M ( j )] is taken as a constraint or 
input assumption? This can be studied by taking observed values 
of  N i   and then using computer Monte Carlo techniques to ran-
domly sample from this regional  “ tray ”  of  N * individual marbles 
to create  C  smaller local  “ trays ”  of marbles. Is this suffi cient to 
reproduce the biodiversity patterns one observes? It is certainly a 
marked improvement over the assumption of equal abundances. 
On some fronts, the random null model works adequately. In par-
ticular, it produces lSADs that are reasonably realistic ( McGill, 
2003 ;  Dolman and Blackburn, 2004 ;  Green and Plotkin, 2007 ). 
But Monte Carlo simulations where one samples from a regional 
pool defi ned by the  N i   from BCI identify several problems. For 
one thing, they tend to over-predict the number of species in a 
local community,  s  ( Fig. 9B ) to such a degree that the hypothesis 
that random sampling drives local richness is highly signifi cantly 
rejected ( P   <  10  − 8 ). In contrast, the individual communities are 
also too similar ( Fig. 9D ) with the average Morisita – Horn simi-
larity index being much higher in the randomly sampled com-
munities than the observed community. In a similar fi nding on 
  β  -diversity, the collector ’ s curve or species individual relation-
ship (SNR) overpredicts richness for smaller areas relative to the 
observed species area relationship (SAR) ( Fig. 5B ), implying 
there is more autocorrelation of individuals and thus less accu-
mulation of new species in the real world (SAR) than a purely 
random, independent sample (i.e., SNR). In short,   α  -diversity is 
too high and   β  -diversity is too low in the randomly (uncorrelated) 
sampled communities. (One necessarily follows from the other 
because   β   =   γ  /  α  .) Thus, using equal  N i   causes   α  -diversity to be 
too low and   β  -diversity to be too high, while using realistically 
unequal  N i   overcorrects, leaving   α  -diversity too high and 
  β  -diversity too low. There must be an additional missing factor 
that returns results to the middle so as to match empirical reality 
(see  Fig. 9B, D ). What is it? 

 Both models so far have used random or uncorrelated or Pois-
son sampling which assumes that individuals within a species are 
placed spatially randomly with respect to each other (and thus 
sampled independently), despite knowing that intraspecifi c indi-
viduals are in fact clumped together in space. This could easily 
explain the observation of too high   α  -diversity and too low 
  β  -diversity. If individuals are intraspecifi cally clumped, this will 
tend to make the individuals in any one local community more 
likely than chance to come from a single species (thus driving 
down   α  -diversity), while making it more likely than chance to 
encounter a new clump representing a new species as one moves 
across space (thus increasing   β  -diversity). Thus, intraspecifi c 
clumping has the potential to scale back the overcorrection found 
in using unequal  N i  , thereby fi nally producing intermediate re-
sults that match reality. Does it actually work? It is not easy to do 
Monte Carlo computer simulations that clump individuals spa-
tially while simultaneously observing the other constraints we 
need to obey (e.g.,   Σ   n i   =  n *). Fortunately, suffi cient analytical 
theory has been developed which matches the Monte Carlo spa-
tially random placement of  N i   individuals while providing an 
easy method to then include clumping. 

 In fact, there are two completely independent lines of theo-
retical development that achieve this goal of realistically mod-
eling sampling of spatially clumped individuals. As already 
discussed in the Setting the stage section, there are two types of 
data: data collected on a grid at usually smaller spatial scales 
and data collected at transects over larger spatial scales. It turns 
out that these two types of data parallel the two different models 

 intraspecifi c  occupancy – abundance relationship or temporal 
occupancy – abundance relationship (tONR) can be calculated 
( Gaston and He, 2011 ). Among other applications, the tONR 
can be useful for predicting the infection rate of plants by pests 
( Nachman, 1981 ). 

 Summary of patterns   —      In summary, there are over a dozen 
well-known, well-documented patterns ( Table 3 ) relating to 
biodiversity metrics of abundance, species richness, occupancy, 
and area ( Brown, 1995 ;  Rosenzweig, 1995 ;  Gaston and Black-
burn, 2000 ). As shown in this paper, it is highly likely to be able 
to take any appropriate data set and fi nd these patterns in the 
chosen data, making these patterns very general and close to 
universal in nature. I now turn to showing how these patterns 
are linked together through the notion of correlated sampling 
and summarize the mathematical theory developed in this 
direction. 

 EXPLANATIONS I: RANDOM (UNCORRELATED) 
SAMPLING 

 The simplest model of sampling is where each sampling event 
is independent from the others. There have already been several 
indications that this model is inadequate for biodiversity data (e.g., 
the need to go beyond the Poisson-derived exponential form of 
the ONR or occupancy – abundance relationship to the more gen-
eral Eq. 3). But mathematical parsimony demands a thorough 
analysis of the simplest form of sampling — namely sampling 
where events are independent or uncorrelated. One canonical 
model for such independent sampling is the placement of marbles 
into urns. To create an exact analogy to the biodiversity patterns, 
suppose one has a large tray of area  A  packed with  N * marbles 
with  S  different colors. For each color, one knows the number of 
marbles,  N i  , of that color on the big tray. Now suppose one has  C  
smaller trays, each of area  a  ( a  =  A / C ) such that it will hold about 
 n * =  N * a / A  marbles. Suppose one randomly distributes the mar-
bles on the big tray into the small trays. One could then count how 
many marbles of each color  i  occurred on tray  j  ( n i   ,   j  ) and count the 
number of colors on each tray ( s j  ). One could then calculate all of 
the patterns that were described in the previous section. Next, one 
could start combining adjacent trays to calculate the SAR, one 
could take individuals one by one to make SNRs, one could look 
at the global and local SADs (lSAD, gSAD) or distributions of  N i   
and  n i  , and so on. Clearly, if this worked, then the patterns listed 
in  Table 2  and studied broadly would not have much biology be-
hind them. Such a pure random sampling model is an obvious one 
and has been tried before ( Gaston and Blackburn, 2000 ;  McGill, 
2003 ;  Dolman and Blackburn, 2004 ;  Zillio and Condit, 2007 ). 
How well does this most parsimonious sampling model work? 

 I fi rst briefl y examine the most extreme parsimonious ver-
sion of this where the  N i   are all equal (i.e.,  N i   =  N */ S ). This re-
quires only  S  and  N * as inputs. Clearly, this will fail to produce 
a gSAD and probably an lSAD similar to empirical patterns 
( Figs. 3, 4 ), but does it affect the other patterns? In fact, many 
patterns beyond the two SAD patterns also fail to match empiri-
cal data in this case. The local richness,  s , is too low ( Fig. 9B ), 
and the species – area relationship shows much too fast an ac-
cumulation of species ( Fig. 5B ). In summary, the   α  -diversity 
(local community) is too low, and the   β  -diversity (between 
community) is too high. Understanding the causes of unequal 
abundances appears critical to understanding the causes of 
overall biodiversity structure. 
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(SAR). To wit, in area  a , the expected number of species is 
( Arrhenius, 1921 ;  Coleman, 1981 ;  He and Legendre, 2002 ): 
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  Storch and colleagues (2003)  gave not just the expected value 
of  S  but the full probability distribution of  s ( a ) and the variance 
of  s ( a ). Thus, if one takes   α  -diversity as occurring at the scale 
 a , then Eq. 6 gives a formula for  s , and if one varies  a  anywhere 
from the   α  -scale  a  to the   γ  -scale  A , then Eq. 6 gives the species –
 area relationship (SAR), giving  s  as a function of  a . 

 Finally, one can calculate pointwise   β  -diversity such as 
would be used for a similarity – distance relation (SDR or DSD) 
calculation. Two limitations occur in this scenario. First, the 
measure of similarity used must be based on presence/absence 
only (not abundance) because the SIO model focuses on occu-
pancy. Typically, the Sorenson index ( Koleff et al., 2003 ) is 
used. Second, the   β  -diversity calculation represents the turn-
over in species composition between two local (  α  ) communi-
ties drawn from the same regional community, but the SIO 
model is spatially implicit — there is no concept of how far apart 
those two local communities are. They are in effect just two 
different draws from the same regional pool. Thus, the similar-
ity is a function of area,  a , but not distance. The SIO formula 
( Plotkin and Muller-Landau, 2002 ;  Morlon et al., 2008 ) for So-
renson similarity is 
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 Thus, knowing the regional parameters  N * and  S , the regional 
gSAD [ N i   or equivalently  M ( j )] and the sampling function,   σ  , 
explains many other biodiversity patterns. These include 
the lSAD (Eq. 4), the occupancy – abundance relation (ONR) 
(Eq. 5), the species – area relationship (SAR) (Eq. 6) and the 
similarity – distance relation (SDR or DSD) (Eq. 7). 

 SIO model with random (uncorrelated) sampling function 
  σ     —      The obvious question is what to use for the sampling func-
tion,   σ  ? The exact analog of the modeling of random place-
ment of marbles or Monte Carlo simulations used in the 
previous section is to use the Poisson or binomial distributions. 

for incorporating clumping. I turn to the fi rst such line of the-
ory/type of data in the next section. 

 EXPLANATIONS II: SPATIALLY IMPLICIT 
OCCUPANCY (SIO) 

 In this section, I address the models that have grown up around 
the fi rst type of data where one has a lattice or grid laid out over an 
area. In this case, the regional community (  γ  -scale) is the total area 
and the local community (  α  -scale) is a single grid cell. The repre-
sentation of geographic extent is given by occupancy,  O i   (in the 
next section, I will address the other type of data with a focus on 
range size  R i  ). Although the grids in typical data are spatially ex-
plicit (one knows the distance between any two grid cells), the 
modeling approach to this data has remained largely spatially im-
plicit — each grid cell is modeled in isolation. Thus, I call this the 
spatially implicit occupancy or SIO model. 

 Analytical theory development   —      The key step to developing 
an analytical approach in the SIO model is to specify a sam-
pling function, which I will denote by   σ   to avoid confusion with 
species richness  s . The sampling function gives the probability 
that  n  individuals of a species are present in a local community 
of area  a , given that it has abundance  N i   in the regional pool of 
area  A . The most general form is   σ  ( n i  | N i  , a , A ,  θ  ), where   θ   is a 
vector of parameters. Often times, the function can be simpli-
fi ed to have no parameters and to depend only on the fraction of 
area in the local community —   σ  ( n i  | N i  , a / A ) or even to depend 
only on the total number of individuals of that one species ex-
pected in the local community of   σ  ( n i  | a / AN i  ). 

 Once the sampling function is known, it is easy to calculate a 
number of properties. The lSAD is given ( Pielou, 1977 ;  Dewdney, 
1998 ;  Green and Plotkin, 2007 ) by 
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 Thus one sums over the different possible regional abun-
dances ( k  = 1 …  ∞ ) and multiplies the probability,  M ( k ), that a 
species has regional abundance  N i   =  k  multiplied by the proba-
bility that a species with that regional abundance has a local 
abundance of  n i   =  j  in a local community of size  a  (given by the 
function   σ  ). 

 A key special case of the sampling function is the odds that 
at least one individual is present (i.e., occupancy). This is most 
easily calculated as one minus the probability of 0 individuals: 
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 This has immediate application to calculating   α  -diversity 

(local community richness) and the species area relationship 

 Fig. 8.   Scatter plots for relations between pairs of variables. Top grid is for BCI, lower grid is for USFIA. The scatter plot for the relation between any 
two variables can be found at the intersection of those variables along the horizontal and vertical axes. The histogram of distributions is shown on the diago-
nal. All logarithms are base 10. In particular, the ONR (occupancy – abundance relationship) is shown in the fourth row, fi rst column in both graphs. The 
RNR (range – size – abundance relationship) is shown in the last row, fi rst column in the second (USFIA) graph. The distribution of log abundances (log  N i  ) 
or gSAD is shown in the fi rst row, fi rst column of both graphs. The distribution of occupancies (SOD) is shown in the fourth row, fourth column of both 
graphs. The distribution of range sizes (SRSD) is shown in the bottom right corner of the second (USFIA) graph.   
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 So specifi cally, the probability of having 0 individuals in an 
area  a  is 
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Then the expected number of species  s ,  E ( s ),   in a local com-
munity is simply 
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Both represent randomness, but they are useful in different 
contexts ( Zillio and He, 2010 ). Specifi cally, the Poisson takes 
a rate (mean number of species per unit area) and is applicable 
when the area rather than the sample size is known and allows 
the area to be continuous (e.g.,  a  = 4.5723). The binomial is 
applicable when the fi nite sample size is known (and discrete, 
e.g., 4 or 5 but not 4.5723) and the precise probability of the 
event of interest occurring in a single sample is known. The 
idea of binomial and Poisson sampling functions have actually 
been in the ecological literature for a long time ( Arrhenius, 
1921 ;  Pielou, 1977 ), but have become a central construct in 
theoretical ecology recently ( Plotkin and Muller-Landau, 2002 ; 
 Green and Plotkin, 2007 ;  Harte, 2008 ;  Morlon et al., 2009 ;  Zillio 
and He, 2010 ). 

 As one example, it has been shown that under Poisson sam-
pling, the lSAD is just a rescaled version of the gSAD ( Green 
and Plotkin, 2007 ) with the abundance scale rescaled by  N */ n *. 
As another example, to reproduce the SAR, one can use a bino-
mial sampling formula, so the probability of having  n i   individu-
als is   

 Fig. 9.   Tests of random sampling null model. All graphs use BCI data. (A) Plot of the actual species – area – relationship SAR (dots) for BCI vs. that 
predicted by Eq. 6 using observed values of  N i   and that predicted by Eq. 6 if all species are equally abundant. Note how the plot using observed values of 
 N i   is very similar to the rarefaction line shown in  Fig. 5B . This demonstrates Monte Carlo and SIO analytical approaches do converge. (B) Local communi-
ties of the same sample size ( n *) as the observed communities were drawn without replacement. The histogram for species richness,  s , in 50 Monte Carlo 
replicates is signifi cantly to the right of (higher   α  -diversity) than the histogram for the 50 actually observed values of  s . The value of  s  obtained under an 
assumption of equal abundances is lower than the observed values. (C) Plot of the observed and predicted (Eq. 5 using Poisson sampling) values of  O i   vs. 
a 1-1 line. Observed values are consistently lower than predicted. (D) The same 50 random and actual communities used in (B) were generated. The 
Morisita – Horn similarity between pairs of communities was calculated across many pairs, and the resulting histograms are given. Random plots have very 
high similarity of community structure. Panels (A) and (C) show the shortcomings of the analytical SIO model with Poisson sampling, while (B) and (D) 
show shortcomings of the equivalent Monte Carlo version.   
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but providing a correction term for spatially explicit clumping 
across neighbors (specifi cally Moran ’ s  I  value for adjacent grid 
cells) further improves the fi t and in total explains much of the 
variance found in the ONR relationship.  Hui and colleagues 
(2009)  developed a spatially explicit occupancy model with ex-
tensions similar in spirit to those of Conlisk by looking at auto-
correlation with neighboring cells and showed that in general 
such spatially explicit extensions to occupancy models improve 
the ability of the models to produce a wide variety of biodiver-
sity patterns. 

 Two other models implement global (i.e., not just neighbor) 
models of spatial structure. Morlon and colleagues ( Morlon 
et al., 2009 ) showed that the most general way to fi x this (in the 
context of   β  -diversity) is by extending the sampling function   σ   
to focus on probability of fi nding an individual at a distance  d  
from a focal individual. This has direct ties to the pair correla-
tion function ( Stoyan and Stoyan, 1994 ;  Wiegand and Molo-
ney, 2004 ;  McGill, 2011 ). In another approach to becoming 
more spatially explicit, Kunin and colleagues ( Kunin, 1998 ) 
built a model centered on the occupancy abundance (ONR) re-
lationship but added the assumption of fractal structure across 
scales, creating a form of spatial explicitness. All of these more 
spatially explicit occupancy models building on the occupancy-
focused SIO model show promise and should be pursued fur-
ther. However, I now turn to a completely different way to build 
a spatially explicit model. 

 EXPLANATIONS III: SPATIALLY EXPLICIT 
RANGES (SER) 

 The model for spatial structure of a species in the SIO models 
discussed in the previous section focused almost entirely on oc-
cupancy of small grid cells and makes the assumption that a 
species is equally likely to appear in each grid cell. This al-
lowed the SIO to be spatially implicit in nature. This is not use-
ful at larger spatial scales where species have more or less 
spatially coherent geographic ranges and the probability of 
fi nding a species is essentially zero outside of the geographic 
range. Several authors noticed that the equally likely every-
where assumption of the SER model ( Coleman, 1981 ;  He and 
Legendre, 2002 ) for SARs was unrealistic and had limited ap-
plicability to large spatial scales ( Hui et al., 2009 ), so they 
started to model spatially contiguous ranges. I turn now to an 
alternative to the SIO modeling framework that is spatially ex-
plicit and focuses on ranges (the SER model) and is useful at 
scales up to entire continents. In essence, the SER approach 
replaces the correlated   σ   with the species range. 

 In the SER model, species ranges are assumed to be circular 
and vary in size. I have so far used  R i   to denote the area of a 
geographic range, but in this section I will use  R i   to denote the 
radius and switch to using  RS i   for range area [i.e.,  R i   =   √  ( RS i  /  π  )]. 
The circularity assumption is more for convenience than any-
thing and does not materially affect results ( Leitner and Rosen-
zweig, 1997  used rectangular ranges). But of course the variation 
in size is critical. I do not bother here to develop a model as-
suming all  RS i   are equal as was done with  N i   for SIO model, but 
it should come as no surprise that if one did, such a model would 
work badly. Instead, the SER model starts with what is already 
known about species ranges:  RS i   is roughly log-normally dis-
tributed and is positively correlated with  N i  . Thus one can either 
start with log-normal  N i   and derive the distribution of  RS i   ( McGill 
and Collins, 2003 ) or just directly assume a log-normal-like 

 In principle, these analytical approaches using a random (un-
correlated)   σ   sampling function should work no better and no 
worse than the Monte Carlo approaches, which is in fact true. 
The performance of these analytical calculations using realistically 
unequal abundances [i.e.,  M ( j ) is log-normal/log-series-like], 
but with spatially random positioning of intraspecifi c individu-
als (i.e., Poisson or binomial   σ   function) can be evaluated 
( Fig. 9A, C ) and compared to earlier results from Monte Carlo 
simulations. Equations 6 and 9 produce a realistically shaped 
SAR that actually falls quite close to the empirically found SAR 
( Fig. 9A ), although just as in the Monte Carlo, it consistently 
over predicts species richness for smaller areas (cf.  Fig. 5B ). 
Similarly, Eq. 5 (also see Eq. 3) provides a formula predicting 
the ONR (occupancy  O i   as a function of abundance  N i  ), that 
clearly is related to the actual data ( Fig. 9D ) but consistently 
overpredicts occupancy,  O i  . So as expected, the analytical 
model with random (Poisson or binomial)   σ   and the Monte 
Carlo approach behave identically — producing results that are 
close to empirical observations (so long as a realistic distribu-
tion of abundance  N i   is used), but which appears to systematically 
overestimate   α  -diversity while underestimating   β  -diversity.

  SIO model with clumped (correlated) sampling function 
  σ     —      So what form of   σ   can be used to realistically incorporate 
the spatial clumping and correlated sampling? The simplest 
way to do this is to use the negative binomial distribution (NBD) 
( Bliss and Fisher, 1953 ;  Boswell and Patil, 1971 ;  Evans et al., 
1993 ). While the Poisson distribution gives values of   σ  ( n i  ) that 
match randomness, the NBD gives values for   σ  ( n i  ) that show 
clumping by having both a greater number of zeros and of high 
abundances but fewer intermediate abundances relative to the 
Poisson. Multiple authors have shown that biodiversity patterns 
are more accurately predicted when a clumped (almost always 
NBD) sampling function is used. This includes the species – area 
relationship (SAR) ( He and Legendre, 2002 ), the lSAD ( Green 
and Plotkin, 2007 ) and the similarity – distance relationship 
(SDR or DSD) ( Plotkin and Muller-Landau, 2002 ;  Morlon et al., 
2009 ). While the NBD serves as an analogue of the Poisson, no 
obvious clumped analogue of the binomial existed until  Zillio 
and He (2010)  recently provided one. Thus, a model using a 
log-normal-like gSAD and intraspecifi c spatial clumping ex-
pressed by a NBD sampling function can quite accurately re-
produce many well-known biodiversity patterns. 

 In answer to the question set at the end of the section Expla-
nations I, it appears that using a log-normal-like regional pool 
of abundances ( N i  ) in combination with intraspecifi c clumping 
producing autocorrelated samples seem to balance each other 
out in terms of   α  - vs.   β  -diversity in just such a fashion that they 
produce very empirically realistic results. 

 Moving the SIO beyond spatial implicitness   —      Despite its 
successes, the SIO with a clumped sampling function remains 
spatially implicit — there is an ability to tell us what any one 
grid cell will look like but not how two adjacent grid cells will 
be similar or different. This is particularly problematic if one 
wants to look at   β  -diversity. There have been several recent at-
tempts to address this. Two models become more spatially ex-
plicitly by looking at neighbor correlation — i.e., some measure 
of similarity between strictly adjacent cells.  Conlisk and col-
leagues (2009)  examined the occupancy – abundance relation-
ship (ONR). They showed that not only does using a clumped 
distribution within one cell such as the NBD improve results, 
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SAR derived in the SER model looks like the middle and right 
phases of the triphasic species area curve ( Fig. 6C ). The SAR 
starts fl at and then accelerates until it reaches a slope of  z  = 1 at 
the largest spatial scales. Computer simulations show that this 
model is a good fi t to empirical data for birds of North America 
above scales of about 100   ×   100 km 2  (the same break point 
found in  Fig. 6C  for trees). As already noted, at smaller scales 
the increasing, decelerating function portion of the triphasic 
SAR is explained by the species – abundance – relationship (SNR) 
or collectors curve. This suggests that the triphasic SAR is re-
ally just biphasic with small scales explained by sampling from 
the SAD and over large scales explained by the SER model and 
with the two meeting smoothly in the middle. 

 To date most development in the literature of the spatially 
explicit range (SER) model on   β  -diversity has focused on the 
SAR. However, this same image of placing down circles at ran-
dom and using stochastic geometry ( Stoyan and Stoyan, 1994 ) 
to check how many ranges overlap a point can be used to calcu-
late Sorenson ’ s index as a function of distance between the two 
points, leading to the decay of similarity with distance curve. 
To my knowledge, this has only been done by computer simula-
tion for birds ( McGill and Collins, 2003 ). An analytical solu-
tion can be written (B. McGill, unpublished), but the formulas 
are even more complex than for the SAR and do not simplify. 

 The SER model is also quite successful at explaining the 
third major pattern, the lSAD. To do this, the SER needs to 
bring abundance back into the picture. Specifi cally, the SER 
model replaces the circular range with a circular abundance sur-
face where the height of the surface indicates the abundance. 
And in particular, the circular range is replaced by a circular, 
bivariate Gaussian bell curve.  Gauch and Whittaker (1972)  ex-
plored by computer simulation the placing of such abundance 
surfaces randomly in space. The gSAD (global SAD) deter-
mined the variation in the height of the peaks (i.e., the gSAD 
described the distribution maximum abundances). Then a sam-
ple taken at a point takes abundances from all the ranges that 
cover the point and the abundances vary depending on where in 
the range (i.e., height of the abundance surface) the species is 
found. They show that this reproduces realistic lSADs (e.g., 
see  Fig. 3  in  McGill, 2010a ). Hengeveld and colleagues fi rst 
derived analytical proofs of this ( Hengeveld et al., 1979 ; 
 Hengeveld and Haeck, 1981 ). Later,  McGill and Collins (2003)  
independently derived an analytical solution. McGill and Col-
lins also used Monte Carlo simulations to show that the as-
sumption of a centered Gaussian bell curve is not essential — the 
model is robust to variation in shape of the abundance surface 
so long as the abundance surface has small high peaks sur-
rounded by large tails of low abundance. 

 Thus, just like the SIO model, the SER model can take as 
input  S ,  N *, and the unequal global abundances [gSAD or  N i   or 
 M ( j )] and clumping (here implemented by contiguous, compact 
circular ranges with abundance peaks) and produce three clas-
sic biodiversity patterns: the lSAD, the SAR, and the SDR (or 
DSD). 

 CONCLUSIONS AND FUTURE DIRECTIONS 

 I have set forth two mathematical approaches (SIO and SER) 
that are capable of producing and explaining multiple biodiver-
sity patterns ( Fig. 10 ) including the lSAD ( n i  ), local species 
richness ( s ), and the two most common refl ections of   β  -diversity, 
the SAR and SDR. The spatially implicit occupancy theory 

distribution of the  RS i   ( Allen and White, 2003 ). The pattern 
receiving the most attention in the SER model is the species –
 area relationships (SAR) derived by computer simulations 
( Leitner and Rosenzweig, 1997 ;  Maurer, 1999 ;  Ney-Nifl e and 
Mangel, 1999 ;  McGill and Collins, 2003 ). More recently, an 
analytical model has been provided ( Allen and White, 2003 ), 
and I will summarize this analytical approach here. 

 Let  ƒ ( R ) be the probability density function for range sizes 
(e.g., the log-normal density). Then the average range radius is 

  � � ³ ,R f R Rdr    

and the average range size is 

  � � π³ 2 .RA f R R dr    

Assume the centers of the  S  species ranges are placed at random 
(spatial Poisson process) and ignore edge effects including mid-
domain effects ( Colwell and Lees, 2000 ). Let the average spe-
cies density (i.e., the intensity parameter in the Poisson process) 
be  S  D  =  S / A . Now focus on a target point (transects are usually 
treated as points in the SER model). Due to spatial randomness of 
the ranges, the odds that a given range for species  i  covers that 
point is given by the ratio of the area over which that species 
could cover the point to the total area (i.e.,   2/  = /i iRS A R Aπ   ). The 
expected total number of species covering that point will be the 
sum of the probability that each range covers that point, i.e.,   
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If range size were constant, then 

  D=2 / ,Rs S R A S A π    

so   α  -diversity increases with   γ  -diversity ( S ) and with average 
range size. Now imagine one wants to know how many species 
ranges will overlap a circular area of radius  P  having area  a  = 
  π   P  2  (i.e.,  P  =   √    π   a ). Then if a species range  i  with radius  R i   has 
a center that falls in the circle of radius  R i   +  P  around the center 
of our target area, then it will intersect the target area. So, as 
before, the probability of falling in this circle is equal to the 
fraction of the total area this circle covers, giving us 
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Returning to the assumption of nonconstant range sizes, where 
one knows only the distribution of range sizes  f ( R ), one has 
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By passing the integral through the sum and recalling the 
defi nitions for   R   and   ,RA    the SER models gives 

  � �D � π �( ) 2 .Rs a S A R a a    

This gives us the species – area relationship (SAR). By taking 
the derivative with respect to  a , one can get the  z -value or slope 
of the SAR. It is clearly nonconstant as  a  varies. In fact, the 
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2008 ;  McGill, 2010a ). But it is my hope that collecting the 
entire approach in one location will advance the fi eld. 

 One desirable direction for advancement would be further math-
ematical development. Mathematical development might take 
the form of developing a cross-scale approach that incorporates 
both the SIO and SER models. I also hope that mathematical 
developments will also lead to quantitative tools helpful to 
ecologists and conservation biologists. Beyond the math, I hope 
that the ideas in this paper will also help to focus and advance 
future macroecological research. This paper draws strong at-
tention to the importance of the regional – local framing of 
community ecology and in particular to the top-down (the re-
gional driving the local) view. It also draws attention to the im-
portance of understanding regional controls of  S  (well studied 
but still poorly understood) and  N  (hardly studied). It highlights 
the unique nature of richness as intermediate between extensive 
and intensive. And fi nally, it highlights three patterns as  “ primary ” : 
the gSAD, the intraspecifi c clumping, and the NAR. Ironically, 
these three patterns are the least well studied of all those listed 
in  Table 2 . 

 Further thought is also needed on the sampling-based ap-
proach described here vs. more mechanistic models mentioned 
in the beginning such as the population drift of neutral theory or 
fractal approaches. I argue that parsimony is an important crite-
ria for choosing between theories and that the sampling of the 
SER/SIO models are maximally parsimonious, but it is reason-
able for somebody to counter argue that a single assumption 

(SIO) focuses on occupancy and is more appropriate for small 
spatial scales, while the spatially explicit range (SER) theory 
focuses on geographic ranges and is more appropriate for large 
spatial scales. 

 Both of these theories have several key features in common 
( Fig. 10 ) including: 

 (1) The emphasis on local communities as samples from a 
regional pool. 

 (2) The regional pool takes  S  and  N * as exogenously deter-
mined by the environment and history. 

 (3) The regional pool must be modeled to have the  N * indi-
viduals allocated highly unequally over the  S  species. 

 (4) The sampling from the regional pool may be approxi-
mated as random (independent) but is much more accurately 
modeled as a highly correlated sample resulting from spatial 
clumping. 

 (5) The sample size is determined by the fact that number of 
individuals in local community scales isometrically (i.e., is pro-
portional) to the area. 

 None of these fi ve commonalities, the mathematical machin-
ery of the SIO or SER, nor the links in  Fig. 10  are novel to this 
paper. Indeed, most of them have been independently derived 
multiple times in the literature. And several authors have pre-
sented theories that capture a signifi cant subset of what is pre-
sented here ( Gaston and Blackburn, 2000 ;  He and Legendre, 
2002 ;  McGill and Collins, 2003 ;  Harte et al., 2008 ;  Storch et al., 

 Fig. 10.   A pictorial representation of the theory presented in this paper. Variables are drawn in boxes. Patterns linking variables (the interactions of the 
main text) are shown as solid lines. Links based on known mathematical processes (in all cases here, random processes related to sampling) are shown with 
a dashed line. Regional richness,  S , and total individuals,  N *, are set by the environment (e.g., climate) and evolutionary/historical processes. The  N * indi-
viduals are allocated across the  S  species by unknown processes but in a highly uneven fashion, resulting in a log-normal/log-series-like gSAD ( N i  ). Given 
the regional abundance ( N i  ) of a species, one can predict the occupancy of the species,  O i  , from a Poisson sampling process. One can also predict the range 
size,  R i   from  N i   as an empirical pattern, but we do not know what processes are involved. Finally, one can predict the total population size of the local com-
munity,  n *, using the NAR (abundance area relationship or IAR). Both processes (the sampling of the ONR and the unknown process behind the RNR) are 
modifi ed from a simple random, independent sample by the fact that individuals within a species tend to be clumped together. Relatively little is known 
about the patterns of clumping or how exactly they affect the sampling process, so this is shown by the cloud and the dash-dot line. Once this clumped 
(autocorrelated sampling) is described, multiple patterns can be derived under the SER (given  R i  ) or SIO (given  O i   and  n *). These include the lSAD (local 
species abundance distribution or  n i  ) and local species richness,  s . The species – area relationship (SAR) can be derived in one of three ways: (1) as a sum 
of  O i   as summarized in the spatially implicit occupancy (SIO) model, (2) as a stochastic geometry problem in the intersection of plots with ranges in the 
spatially explicit range (SER) model, (3) as a collector ’ s curve or rarefaction merely as a sample of individuals from the lSAD. Models 1 and 3 of the SAR 
produce a decelerating function and are appropriate for the left (smaller spatial scale) side of the triphasic SAR ( Fig. 6C ). Model 2 produces an accelerating 
function and is an appropriate model for the right (large spatial scale) side of the triphasic SAR. Although there is not usually a precise, one-to-one mapping 
between the SAR and the decay – of similarity with distance (DSD), both the SAR and SDR (similarity – distance relation or DSD) are manifestations of the 
same underlying spatial structure (i.e.,   β  -diversity) of species and individuals and thus can be derived through the same mathematical models as the SAR.   
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like neutral drift or maxent is more parsimonious. In the end, it 
is probably too early to decide which approach is more parsi-
monious while also being an accurate depiction of reality. In 
particular, we just don ’ t know enough about the nature of in-
traspecifi c clumping to feel confi dent that we have accurately 
captured this process be it in the SIO   σ   sampling function or 
generalized fractals/maxent/netural dispersal limitation/etc. 
Theoreticians need much more empirical data about clumping 
including: empirical measurement across many organisms (a 
strong bias to plants is found in the current measurements), an 
understanding of how clumping changes with spatial scales, 
and precise enough measurements that we can begin to develop 
precise mathematical models. 

 I believe the ultimate goal of macroecology and the study of 
biodiversity patterns should be to develop a quantitative predic-
tive theory useful to conservation. This is not only socially utile 
but is a litmus test for how well we understand the basic pro-
cesses. I hope this paper is a contribution in this direction, al-
though signifi cant additional work is needed. 
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