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Abstract 
There is enormous variation in abundance across the range of a species. This 

variation does not appear to be randomly structured. In this paper I explore the details of 

structure of abundance across a species range (SAASR). I review the history of this 

pattern and show that it is deeply rooted in the history of ecology. Some claim that 

abundance follows a Gaussian or normal pattern across the  range of the species. But 

many reject the claim of a Guassian SAASR. I suggest a consensus position that I call the 

peak-and-tail SAASR. I then test the assertions of the peak-and-tail SAASR using the 

North American Breeding Bird Survey (BBS). I demonstrate that while some aspects of 

the Gaussian SAASR are false (especially the centeredness of peak abundance), the 

weaker peak-and-tail SAASR is a good description of the SAASR in birds of North 

America. I explore possible mechanisms underlying the SAASR, taking three previously 

proposed mechanisms and developing them into quantitative models. I also add a fourth 

model. I produce predictions that can be empirically tested. No single model explains the 

peak-and-tail SAASR, but in combination, these models provide a good basis for 

understanding the SAASR. I conclude by showing that the SAASR pattern has important 

implications for both basic and applied ecology. 
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Introduction 
Macroecology deals with relationships at large scales between variables such as 

abundance, body size, and range size (Brown 1995). Of these variables, range size is 

perhaps the hardest to measure and hence range size has arguably played a lesser role 

relative to other macroecological variables. The two main patterns recognized in 

macroecology (Brown 1995, Gaston and Blackburn 2000) relating to range size are a 

positive correlation between range size and abundance and a roughly lognormal 

distribution of range sizes (Brown 1995, Brown et al. 1996, Gaston 2003). However the 

availability of GIS techniques and large scale census efforts has led to an increased 

ability to study species ranges, and a resultant resurgence of interest in the properties of 

species ranges (Brown et al. 1996, Gaston 2003), building on earlier efforts that were 

necessarily more data-limited (Rapoport 1982, Hengeveld 1990). In this paper I explore 

in detail a pattern with a long tradition but for which only now are we beginning to have 

access to sufficient data to explore the pattern rigorously. 

Specifically, if one examines many sites scattered across the range of a single 

species, one will observe enormous variation in abundance. Moreover, this variation is 

spatially non-random. There is clear structure in the variation of abundance. I call this 

pattern the SAASR (structure of abundance across a species range) pattern. Despite the 

seeming importance of this pattern (argued in detail at the end of this paper), the SAASR 

pattern has received relatively little attention compared to many macroecological 

patterns. In a book dedicated to exploring patterns related to species ranges, Gaston 

devotes only 20 pages to the SAASR pattern. Hopefully, as GIS methods and large scale 

census projects become more common, this pattern will receive the attention it deserves. 
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The SAASR, being a study of the relationship between species ranges and 

abundances at large spatial scales, is an example of a macroecological pattern. The 

macroecological program involves two steps: 1) finding large-scale patterns and 2) 

finding the mechanisms behind the patterns. In the first half of this paper, I attempt to 

define precisely the nature of the SAASR pattern. I summarize previous thinking on the 

nature of the SAASR pattern, suggest a tenable description of the SAASR, and provide 

extensive evidence that this description is accurate. In the second part of this paper, I 

explore various mechanisms that might cause the observed SAASR pattern. 

History of the SAASR pattern 
The appreciation of systematic variation in the abundance of species across large 

ranges must have been known to the first peoples who moved easily across the scales of 

species ranges, perhaps the first sailors of the Mediterranean or Nile. Nevertheless, like 

so much of ecology, the first known written discussion of this phenomenon seems to have 

come from Charles Darwin (1859): 

“In looking at species as they are now distributed over a wide area, we 

generally find them tolerably numerous over a large territory, then 

becoming somewhat abruptly rarer and rarer on the confines, and 

finally disappearing”.  

This quote describes the Gaussian curve quite well — a plateau, a sharp drop, and then a 

very low tail of abundance. 

Many pioneers of ecology also discussed this pattern. Grinnell (1904) mentions 

rates of increase, not abundance, but his mention of “intra-competition” suggests that he 

sees the two as concordant: 
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 “The center of distribution of any animal is where the greatest rate of 

increase is. … In a wide-ranging species  … subcenters of distribution will 

arise at points which prove to be more favorable … From each of these 

new centers of distribution there will be a yearly radiating flow of 

individuals into the adjacent country, so as to escape intra-competition at 

any one point.” 

Shelford’s (1931) “law of toleration” deals primarily with the edges of ranges. He 

suggested that the range limits of a species are set by its ability to tolerate various 

environmental factors. But his diagram (his Figure 5), clearly depicts the abundance as 

being highest in the center and decreasing to the edges. Gause specifically described the 

shape of the SAASR as a normal or Gaussian curve shape and fit the mathematical form 

of a Gaussian curve to data (1930, 1932). However, note that his curves are plots of 

abundance vs. an environmental factor (such as temperature), rather than spatial position. 

Robert Whittaker is probably the person who most popularized the Gaussian 

SAASR pattern. In 1951, he presented his now famous diagrams giving abundances of 

trees along a transect up a mountain. He stated, “the curves are of binomial form, with 

tapered tails”. The next year in a manuscript (1952) primarily dealing with insect 

abundances along transects in the Great Smoky Mountains, but also presenting plant data 

from the same location, he suggests that the curves are “of the binomial, Gaussian or 

normal form” and cites Gause. In the same year, Brown & Curtis (1952) published their 

classic analysis of community ordination in hardwood forests of Wisconsin, plotting 

abundance against a “continuum index”, and suggesting that the data follow a “solid 



McGill            of  57    6

Gaussian curve, or a part of one.” By “solid”, the authors mean that the data actually 

create a scatter diagram whose upper envelope is Gaussian in shape. 

In later papers Whittaker seems varied in describing the SAASR. It is binomial in 

Niering et al. (1963),  just Gaussian in Gauch and Whittaker (1972), and both in 

Whittaker (1967). It might seem pedantic to track this difference in specific words, but I 

will propose shortly that this difference is important. Whittaker’s work reached its most 

assertive in a paper coauthored with Gauch (Gauch and Whittaker 1972). Here they put 

forth five mathematically precise assertions about the behavior of abundance curves 

along a transect. One assertion claims that they are normal and provides explicitly the 

formula for a normal curve. (The other four pertain to the relative locations and heights of 

the peak abundances between species.) 

The early work by Whittaker and Curtis & their colleagues, and certainly the 

mathematically explicit hypothesis in Gauch & Whittaker (1972) inspired an entire 

subdiscipline. It explored patterns in vegetation along a gradient and tested the continuum 

hypothesis (i.e. that community composition changes gradually across space). Dozens if 

not hundreds of gradient studies resulted. An entire conference in Uppsala (1985) 

represented some of the leading workers and was published in a series of papers in 

Vegetatio (1987) and as a book (Prentice and van der Maarel 1987). Some of this work 

was explicitly designed as an empirical test of Whittaker’s mathematical hypotheses. 

Most results partially supported them. For example Austin (1987) found that most curves 

are skewed (usually towards higher temperatures). Minchin (1989) found that 45% of the 

species had symmetric unimodal curves, 33% asymmetric unimodal, and 22% complex. 

Austin (1994) suggested that a better model than a normal or Gaussian curve would be 
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the Beta distribution curve, cxα(1-x)β, which can assume many shapes ranging from 

nearly normal to skewed unimodal to U-shaped. An active debate on the appropriate 

function and fitting methods continues (e.g. Austin and Nicholls 1997). But nearly all of 

the work on plants has consisted of measuring a transect along an environmental gradient 

(e.g. altitude or flood-plain to terra firma), rather than across the entire spatial extent of a 

species range. Perhaps this distinction has not mattered, but it is important to keep in 

mind. 

Although the vast majority of this work was performed on plants, similar patterns 

have been found in animals. Shelford’s (1931) “law of tolerance” is primarily directed at 

animals. Some of Whittaker’s early work was on insects. Whittaker asserts that insects 

follow a binomial or normal form, although he says this same pattern “was demonstrated 

with far more adequate evidence” in plants from the same location. Terborgh sampled 

birds along an altitudinal gradient in Peru (1971). Although he focused on different 

questions, he clearly draws “normal” curves very similar to those of Whittaker. 

Hengeveld and Haeck assembled considerable evidence for this hypothesis with data 

covering plants, beetles and birds in Europe (1982). Much of Hengeveld & Haeck’s 

evidence was aggregate in nature, showing an overall tendency for abundances to be 

higher in the center of ranges across species, although a few diagrams did show this 

pattern within one individual species. Jim Brown and colleagues, working primarily with 

the North American Breeding Bird Survey, have added considerable evidence for this 

proposition (Brown 1984, 1995, Brown et al. 1995, Brown et al. 1996). Enquist and 

colleagues (1995) showed a pattern of increased abundance at the center of range in both 

fossil and modern mollusks. Numerous authors in both the plant and animal literature 
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have pointed out that species which are rare somewhere are usually abundant somewhere 

else (e.g. Schoener 1987, Murray et al. 1999). 

Many authors cite bird survey atlases (Robbins et al. 1986, Root 1988a, Gibbons 

et al. 1993, Price et al. 1995) as evidence for (e.g. Brussard 1984) or against the normal 

SAASR (e.g. Lawton 1996). How can different authors look at the same bird atlas and yet 

some claim that the data supports the normal SAASR and others claim that it rejects the 

normal SAASR? 

Towards a synthesis – what can we truthfully say? 
I believe that this difference and most of the other disagreement about this 

hypothesis comes from disagreement about what the normal SAASR pattern claims, 

rather than a deep disagreement about the actual patterns found in nature.  

Both Gause (1932) and Gauch and Whittaker (1972) explicitly invoke the 

mathematical formula for the normal curve (N= c exp(-(x-µ)2/σ2). This formula has 

several characteristics: 

¾ Continuity: abundances vary in a smooth, continuous fashion 

¾ Peak/drop/tail: there is a plateau of high abundance, a sharp dropoff, and 

long tails. 

¾ Unimodality: there is only a single peak abundance 

¾ Centeredness: the peak is centered 

¾ Symmetry: the data is symmetric about the peak 

I suggest that the peak/drop/tail characteristic is true as is the continuity characteristic 

within limits, but that the last three are false. Specifically, empirical data is often 

multimodal (Austin 1985, 1987, Minchin 1989, Lawton 1996), not centered (Blackburn 
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et al. 1999, Sagarin and Gaines 2002), and not symmetric (Austin 1985, 1987, Minchin 

1989).  

Those who declared the SAASR to be normal were aware that the last three 

features were incorrect. For example, Whittaker presents a great many curves that are 

obviously not symmetric and some of them are multimodal (Whittaker 1951, 1952, 

Whittaker and Niering 1964). Brown also clearly states that the SAASR may have the 

mode at one edge of the range and be multimodal, yet uses the term “normal.” These 

authors have focused on the first two features. Those who reject the normal SAASR 

emphasized the remaining features. Rather than try to decide who is correct, I propose 

that ecologists who study the SAASR pattern need to choose a new term. 

Is there a descriptor other than normal which would be more accurate? The 

normal curve is unusual in the rigidity of its shape. In contrast, binomial curves need not 

be symmetric or centered.  Thus, binomial curves usually provide a better fit to SAASR 

data than the normal curve, although they still are never bimodal. The beta distribution 

contains more parameters and can represent an even greater variety of shapes. Thus, 

various authors have described the SAASR pattern as both binomial (Whittaker 1952, 

Niering et al. 1963) and beta (Austin 1987), but neither of these terms can describe the 

full range of observed patterns (e.g. two peaks with tails on both sides of the peaks). 

Some authors in the plant literature have gone one step further and used smoothing/local 

regression types of techniques (including general additive models or GAM) instead of an 

explicit functional form (Bio et al. 1998, Oksanen and Minchin 2002). However, using 

completely malleable functions loses all predictive power. 
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I propose that ecologists call the SAASR pattern a “peak-and-tail” structure of 

abundance across a range. This seems to me to be precisely the strongest statement we 

can accurately make. It explicitly includes features of Continuity and Peak/drop/tail but 

makes no statement about Centeredness, Symmetry, or Unimodality, all of which we 

know sometimes to be untrue. The “peak-and-tail” SAASR asserts that if we look at 

abundance across a species’ range, we will see: 

¾ Continuity: abundances vary across space in a strongly autocorrelated, 

somewhat smooth fashion, albeit with considerable noise. 

¾ Few Peaks: abundances have one to a few (up to approximately 5 but 

usually 1-3) distinct peaks  

¾ Small Peaks: the peaks occupy a relatively small portion of the range 

¾ High Peaks: the peaks have abundances 2-3 orders of magnitude greater 

than those found in the tails 

¾ Low tails: the tails have very low abundances (usually going down to one 

individual in the entire census at some site) 

¾ Large tails: the tails occupy a large portion of the species range 

¾ Edges mostly tails: the tails occupy a majority of the range boundary if 

only because the peaks are small 

¾ Transition: peaks drop off to tails in an intermediate region  

¾ Varying steepness: the steepness of the drop-off of the peaks (and hence 

the total area of the intermediate region) varies quite a bit between species. 

This provides as strong a statement as I believe we can accurately make about the 

SAASR. 
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It is worthwhile to be more precise about the first claim (continuity) of the peak-

and-tail pattern. Exactly how smoothly does abundance vary? The diagrams given in 

Whittaker (Whittaker 1951, 1952, 1960, Whittaker and Niering 1964) suggest a very 

smooth variation in abundance. As Jim Brown has shown, Whittaker used a great deal of 

smoothing on the data (1995 see his figure 4.7). In an obituary for Robert Whittaker, two 

of his former graduate students (Westman and Peet 1982) made an interesting statement: 

“Whittaker was prone to draw ‘smoothed’ Gaussian curves through scatters of points 

with an impunity that amazed and alarmed his graduate students.” But in immediately 

adjacent sentences these authors state, “While this ran the risk of overlooking the 

significant anomaly, it also succeeded in isolating broad patterns which bore well the test 

of ‘replication’ from other studies” and “he nevertheless resisted the temptation to 

become too entranced with elegance and simplicity.” In many ways, this is the age-old 

debate in ecology between those seeking general patterns in the face of a noisy, chaotic 

world vs. those who find interest in the differences (MacArthur 1972, Kingsland 1995, 

Lawton 1995). 

If we wish to find general patterns, understanding the nature of the noise will help 

to identify general patterns without ignoring exceptions. I suggest there are four different 

models of a noisy SAASR pattern which we might constructively consider (Figure 1). 

Also see Gaston’s figure 4.16 (2003). 

1. Completel spatial randomness (CSR in geostatistical terms); each point is 

independent of all the others (i.e. no spatial autocorrelation). 

2. Envelop model; the SAASR provides an upper envelope with abundances 

ranging from zero to this upper envelope. Although abundances can be 
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very low within the peak, on average they are higher. This is similar to 

Brown & Curtis’ (1952) “solid normal” SAASR as well as to a proposal 

by Enquist et al (1995). 

3. Noisy curve, the SAASR is a smooth curve with a moderate amount of 

noise added to it. Presumably, a smoothing or local regression technique 

would get something very close to the smooth SAASR curve that 

underlies it. Within model #3, it may also be relevant to distinguish noise 

due to measurement error and process noise (noise attributable to 

biological/environmental causes). 

4. Complete deterministic smoothness - The fourth model is the extreme 

opposite of complete randomness. 

Fortunately, attacks on the SAASR pattern because it does not follow pattern #4 

(perfect smoothness) are rare. They would be of little value since all ecologists recognize 

that there is considerable noise in the real world. Brown et al (Brown 1995, Brown et al. 

1995) explicitly consider model #1 (complete spatial randomness) and reject it through 

autocorrelation studies. There is little evidence that pattern #1 is true, but it is a useful as 

a null model. The real question is whether pattern #2 (upper envelope) or pattern #3 

(noisy smooth curve) better represents reality. Pattern #2 predicts a far noisier picture of 

the SAASR pattern. It also raises the possibility of a different set of mechanisms that 

pattern #3. 

Nature of and evidence for a SAASR pattern 
Considerable evidence has previously been given in the literature both that the 

peak-and-tail pattern is true and that we cannot make stronger statements (e.g. 
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unimodality). In this section, I will strengthen the evidence for this conclusion about 

SAASR patterns by performing a thorough examination of the North American Breeding 

Bird Survey (Robbins et al. 1986, Price et al. 1995). Although much work on SAASR 

patterns has already been done using the BBS, I will take advantage of new GIS and 

geostatistical tools to provide more thorough quantitative evidence over a much larger 

pool of species (212 birds) than previously reported. 

Approach and Null Models 

To demonstrate the existence of a noisy peak-and-tail structure is quite difficult. 

To see why, look at Figure 2. Suppose the smooth line represents the “true” distribution 

of abundances of a species across its range. Although this data clearly supports the peak-

and-tail SAASR pattern, reasonable people would disagree on how many peaks exist. 

One could probably find claims for 1, 2 and 3 peaks. This problem is greatly 

compounded when we look not at a continuous sample across space, but the discrete 

samples typically observed, especially when noise is added. The asterisks represent a 

discrete, noisy sample. The data must be smoothed to uncover the non-random spatial 

pattern. Depending on the degree of smoothing used, we will find 1, 2 or 3 peaks (or 

possibly more). The degree of smoothing is an input parameter for which there is no 

objective best value. Thus, the definition of the peak itself is subjective. This presents 

considerable challenges for testing the peak-and-tail hypothesis. Moreover, fitting 

multipeaked surfaces with tails (for example the sum of bivariate normal curves) is 

highly ill-conditioned and therefore computationally extremely difficult. 

My approach is to implement a number of null hypotheses. I then calculate a 

number of statistics on real SAASRs, mostly spatial in nature, and on the various null 
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hypotheses. This provides several statistics that directly support the claims of the peak-

and-tail SAASR and further allows rejection of alternative hypotheses (the null models). I 

use three categories of null models. 

The first null model is complete spatial randomness. I take a real species range 

and its abundances. I then randomly reshuffle the abundances amongst the existing 

sample points, without regard to spatial location. I do this once for each species of bird 

that I include. Thus I have 212 replicates of complete spatial randomness. This represents 

noise pattern #1 in Figure 1. 

I use a second, closely related null model: the irruption model. For it, I create 

about 250 lattice points with an octagonal (nearly circular) range boundary. I then 

randomly assign 8 points in this lattice to have an abundance of 50. I give all remaining 

points an abundance of 1. This is intended to model a species that has a generally low 

abundance but occasionally has large outbreaks of abundance in a few random places. 

 Another group of null models places a Gaussian function across an octagonal 

range. In one variation, there is no noise (pattern #4 in Figure 1). In other variations I add 

noise multiplicatively (i.e. *exp(ε) where ε~N(0,σ) is distributed normally with variance 

σ). This case corresponds with pattern #3 in Figure 1. Two additional variations test the 

importance of location of the peak: 1) a case where the highest peak is placed on the edge 

of the octagonal range rather than the center, and 2) a case with two peaks equidistant 

from each other and from the edges. 

The third set of null models is more complicated. It is based on fractal Brownian 

motion (fBM) studied by Mandelbrot (1982) and reviewed for ecologists by Hastings and 

Sugihara (1993). The colored noise used in current stochastic population dynamics 
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models (Steele 1985, Pimm and Redfearn 1988, Caswell and Cohen 1995, Halley 1996, 

Ripa and Lundberg 1996, White et al. 1996, Petchey et al. 1997, Miramontes and Rohani 

1998, Ripa et al. 1998) are one-dimensional examples of fBM. Considerable evidence 

suggests that environmental variables such as temperature and altitude vary according to 

a fBM process across space (Mandelbrot and Wallis 1969, Mandelbrot 1982, Schroeder 

1991). One of the desirable properties of fBM for my purposes is that fBM actually 

represents a group of processes that range (as a parameter, H, varies from 0 to 1) from no 

spatial autocorrelation (white noise) to extreme autocorrelation (random walk or 

Brownian motion). 

Data Methods 

I downloaded BBS abundance data from more than 4000 routes (Patuxent 

Wildlife Research Center 2001). I averaged the abundances over a five-year period 

(1996-2000) to minimize sampling errors and to maximize inclusions of rare birds. I then 

narrowed the data (a priori, i.e. prior to analysis) as follows: 

¾ used only routes that the administrators classified as high quality for all 

five years (leaving 1401 routes) 

¾ further eliminated 41 routes that were north of 55° latitude because these 

routes were in extremely sparsely sampled areas usually in lightly 

populated regions of Alaska. 

¾ eliminated all aquatic birds because it might be expected that birds using 

fresh water as a primary resource would be very patchy and birds using 

coastlines as a primary resource would best be analyzed in a linear fashion 

rather than a 2-D fashion 
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¾ eliminated species whose taxonomic definition had been split or merged in 

the years of the BBS 

¾ eliminated species which do not breed in the BBS area (i.e. were 

accidentals or casuals) 

¾ used only species which were found at 15 or more different routes because 

I considered it unlikely to get good or significant spatial patterns with 

fewer routes 

This left 305 species of landbird across 1360 routes. 

I performed the analysis with this set of birds. I then also (a priori) added the 

restrictions that there be at least 30 routes and that the average abundance of the species 

across routes where the species was found be greater than 2, primarily to eliminate 

species rare enough to experience sampling errors. This left 212 birds. I reran the 

analysis. The results with 305 species and with 212 species were qualitatively extremely 

similar, but statistics such as r2 were usually 0-10 percentage points (0-0.10) lower for the 

larger set. All subsequent results are presented based on the more limited dataset (212 

species) because it gave the stronger signal, but the results do not depend on the 

elimination of 93 species. 

BBS data is by no means perfect for the analysis of the SAASR pattern. The 

sampling regime allows for considerable noise in the data. However, the use of many 

years, many sites, and many species should reduce all errors but systematic biases.  Two 

commonly cited examples of systematic biases are that the BBS provides indices of 

abundance rather than actual abundance, and there are well-documented biases towards 

easily observable species in the BBS data. However, the fact that I used the data only for 
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comparison of relative abundances within one species largely ameliorates this problem. 

In the end, despite its shortcomings, the BBS is still by far the most suitable today for 

analysis of SAASRs due to its consistency in sampling methods across a large spatial 

scale and for many species. 

One common criticism of studies supporting the SAASR pattern is that it is rare to 

have abundances sampled across the entire species range (Sagarin and Gaines 2002). 

Although the North American BBS is probably unique in the spatial extent and detail it 

covers, it still suffers from this problem. To address this I coded each of the 212 species 

according to how much of its range fell within the BBS boundaries (basically between 

55° North latitude and the border with Mexico and between the Atlantic and the Pacific). 

The coding was done by visual inspection of range maps of Northern hemisphere summer 

breeding ranges (Kauffman 1996) and was necessarily approximate. For ranges that 

extended beyond the region covered by Kauffman I used a variety of sources including 

the World Wide Web to identify the approximate range size. I coded to one of five levels 

(>95% of species range within BBS boundaries, >80% within boundaries, >50% within 

BBS boundaries, <50% within BBS boundaries, <20% of range within BBS boundaries). 

I repeated all analyses using three subsets of the above 212 birds with: 

¾ the 92 species having at least 95% of the range included within the BBS 

boundaries 

¾ the 140 species having at least 80% of their range included within the BBS 

boundaries 

¾ the 184 species having at least 50% of their range included within the BBS 

boundaries 
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The statistics did not vary meaningfully between the three cases or the full subset of 212 

birds. For example, average values that were on a scale of 0-1 (e.g. r or r2) usually 

differed by less than 0.05 which is in most cases an order of magnitude smaller than the 

range of variation found within the set of 212 species. This is not surprising for two 

reasons. First, the subset of 212 species was selected to have a significant presence within 

the BBS range. Secondly, the portions of the range that are excluded from the BBS 

territory are random, and as will be shown below, the location of peaks in a range are also 

random, so on average we are not removing any particular aspect of a species range. 

Based on this, the results presented in the remainder of this paper use the full subset of 

212 species. Thus although an oft repeated criticism of studies of the SAASR pattern is 

that they usually include only parts of ranges (Sagarin and Gaines 2002, Gaston 2003), 

this study appropriately controlled for this problem. 

I analyzed each species one-by-one, loading the abundance at each of the 1360 

routes. The latitudes and longitudes of all routes are known. I calculated a number of 

statistics. The details of the statistics are discussed briefly in the relevant results section 

and in more detail in the table legends. Some of the statistics depended purely on the 

distribution of the abundances, independent of the location. A number of the statistics 

used a Delaunay triangulation (Bailey and Gatrell 1995) and analyzed a route vs. its 

nearest neighbors. This tessellation was also used to calculate the convex hull, which was 

considered to be the species’ range. Routes on this hull were defined to be the periphery. 

A number of statistics such as spatial autocorrelation were based on distance between 

routes in km along the surface of the earth. A few statistics were calculated by doing an 

equal area projection of the latitude and longitude. All of these calculations were 
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performed in Matlab version 5.1 with the mapping add-in. Source code is available from 

the author. 

Results – Distribution of abundances 

The distribution of intraspecific abundances across multiple sites in a species’ 

range gives a hollow curve histogram (see Figure 6 for an example), very similar to the 

shape of the classic single-location, interspecific histogram (SAD) (Brown et al. 1995). 

All but one (fBM) of the null models reproduce this distribution of abundances across 

space (Table 1). The logseries distribution can only produce a hollow curve shape, but the 

empirical data and all but the fBM null model fit the logseries with a high r2. The skew is 

strongly to the left on an arithmetic scale and close to zero on a logarithmic scale. For the 

fBM null model, the poor fit of the logseries, the lack of skew on an arithmetic scale, and 

the power c exponent of ≈1 all combine to show that the fBM generates a symmetric 

distribution of abundances, not a hollow curve. This is inherent in the nature of fBM 

since it is a Gaussian process (according to some definitions of the term). Because of the 

self-similar nature of fBM, it is impossible to correct this by changing the scale along one 

dimension (here the vertical or abundance dimension) without destroying the structure. 

To talk about peaks and tails, I have arbitrarily defined a route as being a peak 

route (for a given species) if it is greater than 70% of the maximum observed abundance 

for the species on a log scale (or equivalently ≤Nmax
0.7).  Tails are similarly defined to be 

less than 20% of the maximum abundance on a log scale. The three claims of the peak-

and-tail SAASR that peaks are rare, tails are very common, and intermediate regions are 

variable, are strongly supported (Table 1 and Figure 7). Peaks occur on average at only 

6.7% of the sites within a species’ range. The tails occupy an average of 72%, with the 
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size of the intermediate region having a 95% confidence interval ranging from about 5% 

to about 55% of the range. The relative size of the peaks and tails stems directly from the 

distribution of abundances. Any null model which reproduces the distribution of 

abundances correctly will reproduce the area of the peaks and tails well also. 

Results – Continuity and smoothness 

Both the normal SAASR and the peak-and-tail SAASR claim that abundances 

vary in a approximately smooth and continuous fashion. To test this, I calculated the 

Pearson correlation, r, between abundance at each route vs the average of all of its 

neighbors in a Delaunay tessellation (with and without log transformation). This statistic 

clearly supports the claim of continuity (Table 2 and Figure 8). The average neighbor 

correlation for log abundances is r=0.68, indicative of significant similarity between 

neighbors with a good degree of noise. This statistic rejects all but one null model. The 

correlation in abundance between neighbors (r=0.68) far exceeds that of the completely 

spatially random processes (Randomized & Irruption which have r≈0) and is far below 

the highly structured Gaussian SAASR’s (which have r≈1, even when noisy). The only 

null model with neighbor r’s close to the empirically observed structure is that of the 

fBM with H=0. In some ways it is not surprising that some fBM model will be close, 

since the parameter H spans the range from completely spatially uncorrelated to 

completely spatially correlated. 

Another category of measures of spatial continuity exactly parallel the above 

results (confirming the claim of continuity in the peak-and-tail SAASR and rejecting the 

same null models). I measured how often a peak route was adjacent to a peak route or a 

peak route was adjacent to a tail route, etc. In the completely randomized model, the odds 
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that a peak site neighbors a peak site are exactly equal to the percentage of peak sites in 

the data. In the empirical data, the odds of a peak being adjacent to a peak are much 

higher (average 25%), than the percentage of peaks in the overall data (6.7%). Similarly, 

the odds of a peak being adjacent to a tail (36%) are much lower than the odds if the data 

were spatially random (i.e. the percentage of tails in the data = 72%). Brown et al (1995) 

presented very similar data. 

Results – Range of abundances 

The peak-and-tail SAASR claims that the peaks are much higher in abundance 

than the tails and that the tails can be quite low. The empirical data confirms this (see 

Figure 9). The ratio between the highest and lowest abundance found within a given 

species range averages 557 with a 95% range of (63.5-2731) and a median of 304.5. The 

peak cutoff level (Nmax
0.7) averages 117 times greater than the minimum abundance with 

a 95% range of (28.8-412.0) and a median of 88.1. Even the lower limit for peaks 

(Nmax
0.7) greatly exceeds our upper limit for tails (Nmax

0.2), averaging a ratio of 32.5 with 

a 95% range of (8.4-114.0) and a median of 24.5.  

All but 3 of the 212 species have the lowest possible observed abundance of 0.2 at 

at least one site (1 observation/5 years). The remaining three species have the next lowest 

possible observed abundance (0.4) at at least one site. Within the convex hull used to 

define the species range, it is quite common for the species not to be observed even once 

in five years along the entire 24.5-mile route used by the BBS. This occurs on average at 

44% of the sites within the convex hull species’ range (Figure 7 and Table 1). 
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Results – Centeredness of peaks 

One of the more controversial aspects of the normal SAASR is the claim that 

abundances are higher in the center. This has been documented as true and given as 

evidence for the normal SAASR in several cases (Hengeveld and Haeck 1982, Enquist et 

al. 1995), while others (using different data sets), have found no evidence for this claim 

(Austin 1985, 1987, Blackburn et al. 1999, Sagarin and Gaines 2002). My study of the 

BBS data supports those who find no evidence for this pattern. In fact, the data on the 

position of highest abundance vs. position in range suggests that the simplest null model 

of Poisson random placement of the peak within the range is quite possibly true. 

To test this, I calculated a statistic (see %dist in Table 3 and Figure 10) that gives 

the distance of the highest observed abundance from the center of the range, rescaled into 

units of percentage of the radius of the range (square root of the area of the range divided 

by π). If the peak is at the center, the value should be 0; if the peak is on the edge, the 

value should be 1. If the range is elliptical, this value can actually be greater than one. 

Using simple calculus, one can show that the average distance from the center should be 

2/3 (0.667) of the radius under a null model of Poisson random spatial placement of the 

peak in a circular range. Calculating this same statistic for an ellipse is not analytically 

tractable and varies with the eccentricity of the ellipse. The fBM models exactly match 

this null prediction of %dist=0.667. The Randomized model was slightly larger 

(%dist=0.748), because this model used actual species range boundaries which were 

somewhat elliptical in nature. The empirical species SAASR data gave an even slightly 

higher value for this statistic (0.81), although the standard deviation from this statistic is 

large enough (0.44) with a large enough 95% range (0.19,1.99) that we should not 
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consider this statistically significantly different from the Randomized or even the Poisson 

null model. The Irruption model was also slightly larger (0.811), presumably due to the 

non-circular shape of the range. In contrast, in the Gaussian null models, this statistic 

averaged very close to zero (slightly larger when noise was large), and in the Gaussian 

model with the peak on the edge, this statistic averaged close to 1.  

Similarly, the proportion of peaks and tails found on average on the perimeter of 

the convex hull (range boundary) are nearly identical with the average for the range as a 

whole  (see Figure 10 and Table 1; averages are 7.5% on the periphery vs 6.7% for peaks 

and 71.4% on the periphery vs 71.7% for tails), suggesting that there is no bias towards 

low abundances on the periphery. This also confirms the “Edges mostly tails” claim of 

the peak-and-tail SAASR —tails are more common on the periphery, but only because 

tails are more common over the whole range. 

Another way to get at this problem is to divide the observed sites (routes) within a 

species range into four quartiles based on distance from the nearest point in the convex 

hull (range boundary). I then take the average abundance in each quartile and normalize 

by dividing by the average abundance for the species across its entire range. If there is a 

tendency for the center to have higher than average abundances, then the quartile farthest 

from the edge should have the highest index, becoming progressively lower towards the 

quartile abutting the edge. On the other hand, if peaks and tails are distributed randomly, 

then each quartile should have an average abundance equal to the average abundance 

over the whole range, giving an index of 1 in each quartile. This second scenario is what 

we actually observe (Figure 11). The mean abundance index for all four quartiles is 
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within .01 of the null value of 1. Interestingly, the center-most (inner) quartile is actually 

somewhat lower if we look at median instead of mean values. 

Thus, in agreement with numerous authors (Austin 1985, 1987, Blackburn et al. 

1999, Sagarin and Gaines 2002), we can soundly reject that birds display any propensity 

to have their peak abundances in the center of their range or to average higher 

abundances in the center. It remains to be understood why a few authors (Hengeveld and 

Haeck 1982, Enquist et al. 1995), have found a central tendency. Is this due to differences 

in the taxa they worked with or to the methods? Hengeveld & Haeck showed this result in 

plants, beetles, and European birds (in contradiction to my results on North American 

birds, Blackburn’s results on European birds, and Austin & Minchin’s results on plants). 

Additionally, Enquist et al found this pattern in mollusks while Sagarin & Gaines rejected 

it based on a metadata analysis covering a wide variety of organisms. Thus, it seems 

unlikely that this pattern varies among taxa. But I have also been unable to identify a 

causal difference in methods. 

Results – Number of peaks 

Another oft-disputed  feature of the normal SAASR (Austin 1987, Minchin 1989, 

Lawton 1996) is the claim of unimodality (i.e. that there is one peak). As per the 

discussion above with regards to Figure 2, there is no way to determine objectively the 

number of peaks and test this claim. Several authors have pointed out that a simple visual 

inspection of the maps found in the Breeding Bird atlases (Gibbons et al. 1993, Price et 

al. 1995) disprove the claim of one peak (Maurer and Villard 1994, Lawton 1996). 

However, one must be careful to disentangle a surface that is rugged due to noise vs. one 

that is rugged due to multiple peaks (Figure 2). Here I quantify, to my knowledge for the 
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first time, the distribution of the number of peaks.  I denoted peak sites as before 

(abundance greater than 70% of the maximum abundance on a log scale). I then took all 

such peaks for a single species and applied an agglomerative clustering algorithm based 

on average distance between elements in a cluster (MATLAB’s cluster command with 

mode ‘average’). I then took clusters whose average distance was greater than or equal to 

¾ of the radius of the range (i.e. square root of range area divided by pi) and called them 

distinct peaks. These numbers are admittedly (indeed necessarily) arbitrary, but they 

seem to define peaks similar to my visual inspection. 

The distribution of number of peaks is shown in Figure 20. The average number 

of peaks for a species was 2.87 with a 95% inclusion range of 1-5 and a median of 3. If 

we eliminate very tiny peaks (being defined as peaks containing less than 10% of the 

number of routes found in the largest peak for that species), then the distribution shifts 

slightly to the left (mean of 2.48 peaks with 95% range of 1-4 and median of 2). These 

tiny peaks may be due in some cases to observer error, but in others are probably 

biologically real and interesting. In general, one peak usually dominates, containing on 

average 65.8% of all the peak routes observed for that species. Thus the “Few peaks” 

claim of the peak-and-tail SAASR (there are a few, usually 1-5 peaks) is well supported, 

but the Unimodal claim of the normal SAASR (i.e. there is just one peak) is soundly 

rejected — 50% of the species had three or more peaks. 

Results – Fitting smooth surfaces 

Lacking a precise definition of a peak, I had to use indirect methods to test the 

claim that a peak and tail structure exists across the whole range (i.e. the peak/drop/tail 

claim of the normal SAASR and the general sense of the peak-and-tail SAASR). I used 
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two different techniques. One is based on fitting smooth functional surfaces to the data. 

The other is based on spatial autocorrelation analysis. 

The most obvious test would be to fit a smooth surface represented by a function 

giving abundance (height) as a function of location. If this surface fits well, and possesses 

a peak-and-tail structure, then the claim would be supported. The challenge with this, is 

that the data is often multipeaked. Thus, it is not obvious what functional form to use. 

One of the simplest forms one could try is a 2-D parabola (or quadratic surface). 

Depending on your perspective, this minimal function could be said to fit surprisingly 

well or poorly (average r2 of 0.2; see Figure 12 and Table 4). A slightly more realistic 

function begins by log-transforming the data and then fitting a parabola. This corresponds 

to a 2-D Gaussian curve (which is the exponential of a quadratic equation). The fit 

improves, with an average r2 of 0.33. 

Fitting a quartic (order 4 polynomial) to log-transformed data gives a simple 

function that allows two peaks. This increases the average r2  to 0.445. The quartic 

polynomial does contain 16 parameters, but that does not overfit the data since the 

average range has a mean of 625 routes and a median of 580 routes. 

The r2s for fitting simple polynomial surfaces to the data are especially 

meaningful in comparison to the null models. The r2’s are much higher than the random 

models (Randomized, Irruption), and much lower than any of the Gaussian null models 

(even the one with two peaks). The only null models which have r2’s of the same size as 

the actual species ranges are the fBM models, but very different values of H are needed 

to get an r2 close to the observed r2’s for each of the 3 models (quadratic, log quadratic, 

and log quartic) described above. 
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Trying to fit the sum of multiple Gaussian curves (which is probably the closest 

mathematical description of the peak-and-tail model) is notoriously ill-conditioned, 

meaning that trying to fit such a model is computationally intensive and unreliable. My 

own experiences with attempting to fit the sum of 2-D Guassians to BBS data confirm 

this. Results arrived at by optimization routines were usually visibly inferior to sets of 

parameters that I could choose by visual inspection. 

I was able to fit the sum of Gaussians to the empirical data with two 

simplifications: 1) I used only 1-D transects across space and 2) I used heuristics to start 

the optimization routines with a good guess and to constrain which variables they tried to 

optimize. In particular, I took the transect starting at the highest abundance in the whole 

range and running to the farthest away point on the range boundary. I took 100 evenly 

spaced points along this transect. The abundance used at each point was a linear 

interpolation of the three surrounding points in a Delaunay triangulation (MATLAB’s 

“griddata(…,’linear’)” function). This is an important point – there was no smoothing of 

the data, just interpolation of neighboring points. I then fit a modified Gaussian function 

of the form N(x)=c exp (-σ|x-µ|z). The modification is the extra parameter z (where z=2 

in the Gaussian). This allows for more leptokurtic and platykurtic shapes and has been 

used as an extension of the Gaussian shape in past work in ecology (Roughgarden 1974). 

I then fit the modified Gaussian function to the transect abundances using a nonlinear 

least squares algorithm in MATLAB. 

To fit the sum of two modified Gaussian functions (allowing for two peaks on the 

transects), I had to use heuristic methods to ensure the solution converged to a visually 

acceptable solution. I used a kernel-smoothing algorithm (Martinez and Martinez 2002) 
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to identify the location of the second largest peak. I then fixed this location and had the 

nonlinear optimization (least squares) algorithm optimize only the two σ and z 

parameters. I also used a functional form based on the maximum of the two modified 

Gaussian functions at any point rather than their sum. 

Using this method, I got fits that looked moderately good, although often better 

fits still appeared possible. The resulting r2’s were quite good (average r2=0.60 for 1 

peak, 0.82 for two peaks; see Table 4 and Figure 12). However, this is clearly a case 

where null models are important. In particular, the spatially random models 

(Randomized, Irruption) had as good or slightly better fits, but when we examine the 

parameters of the fit, it becomes clear that the fit is good only because the modified 

Gaussian function can approximate a Dirac delta function (0 everywhere and infinity at a 

point). In fact, the parameters are quite different for the spatially random models then 

they are for real species’ ranges. The Gaussian models again had noticeably better fits 

than empirical SAASRs (with r2’s close to 1.0). The fBM performed much more poorly 

(r2’s of 0.18-0.47 and 0.23-0.40 for one and two peaks respectively and for increasing 

values of H). 

Thus, the combination of trying to fit variations on parabolic surfaces (which 

rejects the spatially random models) and trying to fit the modified Gaussian transects 

(which rejects the fBM), conclusively rejects all null models. Looking at the resulting 

shapes of the curve fits is also informative (see Figure 13 and Table 4). The average 

value of z is 2.54, not far from the Gaussian case of z=2, but the empirical ranges show 

considerable variation with some extremely leptokurtic and platykurtic cases. . We can 
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also see that although the irruptive model had good fits to the transects, the fits are far 

more leptokurtic (peaked) than the actual data (average z=7.7).  

In summary, fitting various smooth functions that are related to the normal or 

Gaussian curve tells us several things. First, the empirical SAASR is distinct from all of 

the null models. Second, the r2s are moderately high, especially when we consider that 

the peak-and-tail model allows for multiple peaks and we have only fit cases with one 

and two peaks. Thus although a purely Gaussian model does not describe the data 

optimally, it is not a terrible description. And addition of a second peak makes the fit 

better. This suggests that the general shape of the peak-and-tail model has fairly good 

support. Finally, the fact that such smooth functions can be fit to the data is further 

evidence for the reasonably smooth and continuous variation of abundances across a 

range. 

Results - Autocorrelation 

The second way in which I attempt to reveal the peak-and-tail SAASR is using 

spatial autocorrelation. A spatial autocorellogram (Bailey and Gatrell 1995) measures the 

degree of spatial autocorrelation at various distances. The horizontal axis represents 

distance, broken into bins (of 50 kms in this study). In this paper, I normalize the 

horizontal axis to range from 0-1 by dividing by the maximum observed distance. This 

allows for easy comparison between the models. The vertical axis is the covariance 

between points of the corresponding distance, divided by the variance of all points. This 

causes the values to vary usually from –1 to 1 in rough analogue to the Pearson 

correlation coefficient (i.e. r) for all pairs of points at the given distance apart. In a system 

with no spatial autocorrelation, the autocorrelogram is a horizontal line at r=0. A typical 
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null autocorrelation model for a system with spatial autocorrelation looks something like 

the function r(x)=exp(-cx) which starts with r=1 and fairly quickly decays to a r ≈ 0 for 

large x (distances), indicating high correlation between nearby points and no correlation 

between points far apart. 

Brown and colleagues pioneered the use of spatial autocorrelograms to study the 

SAASR pattern (Brown et al. 1995). They suggested that the SAASR pattern typically 

shows a U-shape: the left edge of the U corresponds to local spatial autocorrelation 

(nearby sites are similar in abundance); the bottom of the U is negative which 

corresponds to peak-to-tail correlation; and the right side of the U is positive, 

corresponding to tail-to-tail (edge-to-edge) positive correlation. They give the 

autocorrelograms for four randomly chosen species which demonstrate this U pattern. I 

extend this work to look at 212 species. 

The autocorrelation signatures of the null models are clear (see Figure 15, Figure 

16, and Figure 14). The spatially random models are indeed a horizontal line at r=0. The 

Gaussian models with one peak in the center are U-shaped, as suggested by Brown and 

colleagues. However, the remaining two cases suggest that although the left 2/3 rds of the 

diagram varies little (a slash down to the right going from positive to negative), the right 

hand side depends on where the peaks are located and how many peaks there are. The 

autocorrelation for fBM is fairly complex, consisting of a slash down to the right 

followed by a series of oscillations. The number of oscillations decreases and the 

amplitude damps with increasing spatial autocorrelation (H). All of these are summarized 

in Figure 17. 
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What do the actual empirical SAASR autocorrelations look like? Figure 17 shows 

the average empirical SAASR autocorrelogram, and Figure 18 shows the 

autocorrelograms for a random sample of 40 species. There is a great deal of noise, and 

the noise increases as we move to the right. However, with a few very noisy exceptions, 

they begin with the slash down to the right (starting positive and decreasing to a 

statistically significant negative value. From there they vary drastically. Some return 

upwards to complete the U, resembling the centered, single peak Gaussian model. Others 

continue to decrease all the way to the right. Others return to zero and stay near zero. 

This agrees with the peak-and-tail structure as indicated by the various versions of the 

Gaussian model. The slash down-to-the-right from positive to negative is indicative of 

peaks and tails. The behavior on the right depends on how many peaks there are, where 

they are located in the range and even on the eccentricity of the range shape. Given our 

evidence that peaks are randomly located in the species range, the U-structure would not 

be expected to always occur. 

Table 5 and Figure 19 gives a numerical quantification of the behavior of all 212 

species. The r2 reported indicates how well a 4th order polynomial fits the 

autocorrelogram (used as a simple measure of the smoothness and regularity of the 

autocorrelation). As can be seen in Figure 19, the vast majority of autocorrelograms had a 

high r2, indicative of significant spatial structure (as well as smooth and continuous 

variation). Low r2 values tend to correlate with low number of routes and hence small 

sample size. The left hand side has an average r=0.72, and an average middle value of –

0.14 — together indicative of the slashing down-to-the-right pattern discussed above. 

Looking at the LT and LS columns of Table 5 we can see that the vast majority of 
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empirical autocorrelations have a statistically significant positive value on the left and 

even more are positive if we drop the requirement of statistical significance (both LT & 

LS measure the behavior of the three left-most points). The evidence for a negative 

middle is somewhat weaker, but 76% are negative. The behavior on the right shows no 

real pattern, averaging just r=0.08, barely above 0. 

Summary of evidence for peak-and-tail SAASR 

I have presented empirical evidence form the BBS which suggests that: 

¾ abundance varies in a moderately smooth fashion across a range with a 

high degree of local spatial autocorrelation 

¾ peak regions have very high abundances 2-3 orders of magnitude higher 

than the tails 

¾ peaks are rare (averaging about 6% of a range) relative to tails (averaging 

about 70% of the range) 

¾ the region of highest abundance is randomly placed within the range 

¾ analysis of spatial autocorrelation and fitting of smooth functional forms 

suggest a peak-and-tail structure 

¾ ranges have 1-5 (usually 2-3) peaks  

In short, the normal SAASR is false if the assumptions of Unimodality and Centeredness 

are included, but has significant support if only the “smooth and continuous” and the 

“peak/drop/tail” claims are expanded into the peak-and-tail SAASR. 

Moreover, I can reject all null models. 

¾ The random patterns (Randomized, Irruption) have far too little local 

spatial autocorrelation (on average), are too poorly fit by 2-D smooth 
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surfaces, have 1-D smooth surfaces that drop far too quickly (i.e. too 

leptokurtic), and do not have the characteristic slash down-to-the-right 

autocorrelograms. 

¾ The Gaussian models on average are too highly spatially autocorrelated 

and too well fit by 2-D and 1-D smooth surfaces. They do share the 

autocorrelograms’ structure if multiple peaks variously located are 

included 

¾ The fBM models are very poorly fit by 1-D and 2-D smooth surfaces, and 

do not have the correct distribution of abundances encountered at sites 

within a species. Although the fBM can be shown to be close to empirical 

ranges for some value of H, no one value of H causes fBM to be close to 

empirical data for all statistics. For example, neighbor correlation is close 

to that of empirical ranges for H close to 0, but fitting of smooth surfaces 

matches most closely when H is close to 1. Thus, there is no one H which 

makes fBM a good model. 

The two models which perform best are the irruption and the Gaussian models 

(albeit requiring a high degree of noise, multiple peaks, and peaks located randomly). 

Both the irruption and pure Gaussian models can be argued to be extreme cases of the 

peak-and-tail SAASR. At one end (irruption), there are relatively many peaks of small 

size. At the other end (Gaussian), there is a single peak of very large size. Empirical 

SAASR’s appear to fall on the spectrum between these extremes. At one end, species 

with overall low abundances (commonly found in birds of prey) or with very specific 

habitat requirements often exhibit a SAASR close to the irruption model. See Figure 21 
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for Cooper’s hawk and Figure 22 for canyon wren. At the other extreme, some species 

come close to the Gaussian model with its single, large, centrally-located peak. See 

Figure 23 and Figure 24 for dickcissel and scissor-tailed flycatcher. Curnutt et al. (1996) 

suggest that many sparrows also fit this end of the spectrum. Most species, though, 

appear to fall somewhere in the middle of this spectrum. See Figure 25 for red-bellied 

woodpecker. 

The peak-and-tail SAASR accurately describes the entire spectrum. It may be 

useful someday to develop measures describing the position within the spectrum of 

different SAASR’s and to explore biological correlates (if any) of position within the 

spectrum. 

One caveat: I have intentionally excluded shorebirds, freshwater aquatic birds and 

rare terrestrial birds. I do not know whether the peak-and-tail SAASR applies to these 

groups. 

As Gaston (2003) suggests most of the evidence assembled to date on the normal 

or peak-and-tail SAASR has been somewhat circumstantial. Gaston (p. 146-148) lists 

four traditional types of evidence and identifies problems with each of them. The 

methods used herein address all of the problems raised by Gaston. By the use of a large 

number of species, by the calculation of a large number of spatial statistics indicative of 

peak-and-tail structure, by using data from species ranges and not gradients and by using 

whole species ranges, and especially by contrasting them with other null models of 

spatial autocorrelation, strong, rigorous evidence for the peak-and-tail SAASR may at 

last be at hand. 
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Towards mechanisms for the SAASR pattern 
This paper gives a clear statement of a macroecological pattern: the SAASR 

follows a peak-and-tail structure. However, the ultimate goal of macroecology is not to 

find patterns, but to explain them (Brown and Maurer 1989, Brown 1995). Three 

mechanisms have been proposed to explain the peak-and-tail SAASR. To date, all three 

have been proposed only in verbal/conceptual models. This has made it difficult to 

rigorously test these mechanisms, and, as a result, none of them have been rejected or 

clearly favored. I will now develop more quantitative models of each of these three 

mechanisms and assess their success at explaining the peak-and-tail SAASR. I will also 

introduce a new model and assess its success. 

Any successful theory of mechanism underlying the SAASR pattern must explain 

five features of the SAASR: 

¾ Why are abundances spatially autocorrelated and not spatially 

independent? 

¾ What causes peaks? 

¾ What causes the intermediate (usually sharp) dropoffs in abundance from 

the peaks? 

¾ What causes the tails? 

¾ What causes the boundary of the range? 

On one level, the causes of these patterns are obvious. Abiotic factors (temperature, 

moisture, etc.), biotic factors (competition, predation, parasites, prey) and disturbance 

regimes all vary across the species range. This must ultimately cause the vital population 

rates of birth, death, immigration, and emigration to vary across a species range (Randall 

1982, Curnutt et al. 1996, Lawton 1996, Maurer 1999) and should lead to differences in 
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equilibrium abundances (Holt et al. 1997), and hence to the SAASR pattern. However, 

that level of causation is unsatisfying. Various authors have studied what sets range 

boundaries at a more interesting level of causation (for recent reviews see Gaston 1990, 

Brown et al. 1996, Gaston 2003), and I will not explore this further here. I will instead 

focus on the first four aspects of the SAASR pattern. 

For each of the proposed mechanisms, I will: 1) briefly describe the concept, 2) 

develop a quantitative model, 3) assess whether the model shows the mechanism could 

produce the SAASR pattern, and 4) present evidence that supports the mechanism and 

suggest further tests of the mechanism. 

Model 1: Physiological response 

Concept 

The concept of a physiological response curve suggests that some component of 

fitness responds smoothly and with a well-defined shape as some environmental variable 

varies; in other words, W=f(E) where E is some environmental state such as temperature, 

W is a component of fitness such as  survival or fecundity, and f is a functional form 

relating the two.  

History 

Gause adopted this approach in his pioneering work on the subject of SAASRs. 

He noted (1931) that “The problem of ecological distributions of organisms seems to be 

one of the least investigated problems of quantitative biology,” sadly a statement as true 

today as it was then. Gause assembled a number of early physiological response curves 

(Gause 1930, 1931, 1932) to temperature, depth beneath the sea and various more 
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complex environmental measures. He suggested that the functional form of the response 

surface (i.e. f) is the bell-shaped normal function, f(E)=exp(-E2), due to the central limit 

theorem (Grimmett and Stirzaker 1992). The grasshoppers studied by Gause himself 

(1930) do indeed show a Gaussian shape, but most of the rest of the data he assembled 

show little if any evidence for the tail aspect of the bell curve, showing instead just a 

unimodal hump. 

Hengeveld and Haeck also list physiological response as a possible causal 

mechanism of the peak-and-tail SAASR and favor this choice over dispersal (1982). 

However, they do not develop a quantitative model. 

Quantitative model 

Gause used equilibrium population size as the measure of fitness. Unfortunately, 

later researchers were motivated by more physiological questions and measured other 

components of fitness such as fecundity or survivorship. This necessitates a second 

mapping function N*=g(W)=g(f(E)) where N* gives the equilibrium population size and 

g is a function mapping a component of fitness to an equilibrium population size. Very 

little is known about the shape of g(). Holt et al (1997) recently reiterated the point that 

fitness and equilibrium population size are strongly positively correlated, and hence there 

probably is some function g (albeit a noisy one).  Ecologists often overlook this because 

the logistic equation has r (a measure of fitness, W) and K (i.e. N*) as independent 

parameters. Others have also made this point (Williamson 1972, Kuno 1991). Holt et al 

give a simple model in which equilibrium population size is a linear function of fitness 

(i.e. N*=cW), but there is no evidence for choosing the linear form over nonlinear forms. 
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Lawton also emphasized the link between the SAASR pattern and variation in r across 

space (1993) 

Assessment of model 

How well does the physiological response model, N*=g(f(E)) explain the peak-

and-tail SAASR? The first feature (smooth and continuous variation in abundance) can 

be deduced if f() and g() are smooth functions and E varies smoothly and continuously 

over space. Of course E does not vary entirely smoothly, but at large scales this 

approximates reality. 

Does the physiological response model explain the peak/drop/tail shape? This is 

less clear given modern evidence than Gause thought.  The SAASR shape depends 

entirely on the shape of f and g, and in particular on the shape of f composed with g (f•g). 

Physiologists have measured the shape of f in a wide variety of circumstances. 

But they have rarely reported a response surface (i.e. f) that is Gaussian in form. In 

general, a Monod/Michaelis-Menton functional response is measured to factors such as 

light, water and mineral nutrients (Farquhar et al. 1989, Botkin 1993, Kellomaki and 

Kolstrom 1994, Taiz and Zeiger 1998, Kinzig et al. 2002) and a parabolic response is 

measured to temperature (Birch 1953, Force and Messenger 1964, Jones 1992, Botkin 

1993, Guttierez 1996, Taiz and Zeiger 1998). In addition, a few components of fitness, 

especially rates (e.g. rate of photosynthesis with unlimited water), demonstrate an 

exponential form of response curve f, often the Arrhenius equation (Ahlgren 1987, 

Kooijman 2000, Gillooly et al. 2002). But more realistic aggregate measures of fitness 

over larger (but biologically relevant) ranges of temperature show some unimodal form 

(Guttierez 1996, Kooijman 2000). Mechanistic models of the temperature response 
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usually produce an asymmetrical function (in contrast to the parabola), but still produce 

very sharp drops at the edges with some form of plateau in-between (Sharpe et al. 1977, 

Talkkari and Hypen 1996). 

Based on current physiological knowledge, the shape of f contains a peak and a 

drop, but not a tail. The only way the physiological response theory can produce the full 

peak/drop/tail pattern is if the function g (i.e. the mapping from a component of fitness to 

equilibrium population size) somehow converts the sharp drops found in the shape of f 

into a tail. This is also necessary for Gause’s results to be consistent with modern 

physiology. Unfortunately, ecologists after Gause have rarely measured N* as a 

component of fitness in a response curve. So, we have no idea what the shape of g is. 

Supporting evidence and future tests 

There are some reasons to think g might convert the sharp drop of f into a tail. 

When the component of fitness measured is survival, a sigmoidal response with a tail at 

one end is commonly observed. Mueller (1988) provides a simple, statistical reason why 

this might be true based on the shape of the cumulative distribution function of the 

normal curve. It is also interesting to note (since the exponential has a tail) that Gause 

(1932) reports an exponential increase in N* with increasing levels of food, even though 

traditional responses surfaces measuring food intake (in this case known as a Type II 

functional response) are Monod-shaped (Holling 1959). Finally, in a laboratory 

experiment, Davis and coworkers (1998) grew three species of Drosophila in four 

separate incubators set at a range of temperature designed to emulate those encountered 

by Drosophila. They measured equilibrium population sizes along the cline, and N* 

seems to show “tail-like” behavior although it is difficult to tell with only four points 
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along the cline. All of this evidence hints that the mapping between less aggregate 

components of fitness and N* may generate tails. 

In the end, we do not know enough today to assess the potential of the 

physiological  response theory to explain the full SAASR shape (including the tail). More 

work is needed on understanding the form of g (or in directly measuring N* as a function 

of environmental gradients). However, it seems that the Monod and parabolic response 

surfaces are quite good at explaining the peak and rapid drop aspects of a SAASR but not 

the long tail. Proving this hypothesis, though, requires more work. In particular, it 

remains to be shown that the sharp drops are observed in the natural world at the same 

points in the environmental gradient that they are observed in the laboratory (i.e. in the 

physiological response curve). 

Since climate is often invoked to explain range boundaries (MacArthur 1972, 

Root 1988b), and I have just discussed climate as a possible cause of the SAASR, it is 

perhaps worth noting that two other mechanisms commonly invoked to explain range 

boundaries are unviable as complete explanations of the SAASR pattern. In particular 

metapopulations (Prince and Carter 1981, Lennon et al. 1997, Holt and Keitt 2000) and 

competition cause the same extremely sharp drop in abundance from a reasonably stable 

plateau found in physiological response functions. Thus, these factors could be invoked 

to explain the transition zone from peak to tail, but leave no explanation for the tail 

Model 2 – Dispersal 

Concepts and history 

This explanation proposes that the peaks are sources, and the tails are sinks (sensu 

Shmida and Ellner 1984, Pulliam 1988). Grinnell clearly suggested this idea in much of 
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his work (1904, 1922), as exemplified by the quote I gave earlier in this paper. 

MacArthur (1972) develops a model based on Fretwell’s Ideal Free Distribution (1969) to 

explain at a behavioral level why species might move to less fit regions of the 

environment (i.e. sinks) at the scale of a species range. Pulliam (2000) shows that 

migration at the scale of species’ ranges can create a source-sink dynamic where a 

species is found outside of its fundamental niche, and Lawton suggests this verbally 

(Lawton 1993, Lawton 1996). 

A number of other workers have suggested that dispersal causes the SAASR 

pattern without identifying the resulting source-sink dynamic. Lotka (1925, see also 

Maurer 1999) developed what he called the “intensity law,” which suggests that 

populations behave like an ideal gas and expand outwards in areas where the “population 

pressure” is high. Hengeveld and Haeck (1981) cite diffusion as one of two possible 

explanations, although they tend to dismiss it. Schoener (1987) calls the peak-and-tail 

pattern “diffusive rarity” since the normal SAASR suggests diffusion to him. McCall 

(1990) suggests the “basin model” which is essentially the idea of an ideal free 

distribution or IFD (Fretwell and Lucas 1969) applied at the scale of a species range. 

Maurer devotes a significant portion of one chapter to developing Lotka’s ideas (1999). 

Kirkpatrick and Barton (1997) show that species boundaries can be set by limits to local 

adaptation created by gene flow. Their model does produce equilibrium SAASRs that are 

roughly normal in shape, but they do this by putting in a Gaussian shaped carrying 

capacity as an assumption.  
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Quantitative model 

Skellam (1951) gave the most useful model for the present purpose of predicting 

the shape of the SAASR with dispersal. He modeled population dynamics with dispersal, 

basing it on the mathematical (and physical) concept of diffusion and using reaction-

diffusion equations (Grimmett and Stirzaker 1992, Turchin 1998, Case 2000, Kot 2001). 

Simple versions with unlimited population growth (i.e. exponential growth without a 

carrying capacity) and no spatial boundaries produce a Gaussian shaped distribution of 

abundance across space. This Gaussian curve expands across space forever, creating a 

traveling wave. This is untenable as a model of a SAASR, although it has proved useful 

in modeling range expansions (Shigesada and Kawasaki 1997, Turchin 1998). In the 

same paper, Skellam adds logistic growth (i.e. with a carrying capacity) and creates hard 

boundaries (all organisms diffusing beyond them die). This equation is often called the 

Fisher equation after R. A. Fisher who used a mathematically equivalent equation to 

describe gene flow across space (Fisher 1937). Kot (2001) gives an easy to follow 

exposition of solving the Fisher equation. The Fisher equation with hard boundaries 

yields a steady state solution which is unimodal, but it has extremely short tails. The 

solution contains a flat plateau at the carrying capacity, K, in the center and drops off 

quite steeply at the boundaries. 

Note that the hard boundary model is equivalent to assuming a square-wave 

version of physiological response across an environmental gradient (i.e. W=f(E) is at 0 

for a while, instantaneously jumps to a constant, non-zero level for some extent, and then 

instantaneously jumps back to zero). In short, in order for Skellam’s model to produce a 
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static SAASR pattern, it had to incorporate the physiological response model as an 

assumption. Thus, the dispersal model depends on the physiological response model. 

Even by including the physiological response model, the model does not explain 

the SAASR (we just got back a rounded version of the square-wave function we put in 

with almost no tails). However, there is growing evidence that the basic assumption of 

the diffusion equation (that dispersal distances are Gaussian) is wrong at the scale of 

species ranges. Dispersal is now recognized to be heavy-tailed. This translates 

biologically into an excess of long distance dispersal events (Clark 1998) relative to the 

normal curve. This does not matter for some cases (e.g. the existence of a traveling wave 

seems to be robust to the exact shape of the dispersal kernel). 

To test the implications of heavy-tailed dispersal on SAASR patterns, I 

implemented a very simple discrete model approximation to the Fisher equation. 

Population abundance was tracked separately at each of 100 nodes in a finite lattice. At 

each time step, the population at each node was calculated according to the Ricker 

equation. A fixed portion of each population was chosen to move with half moving to the 

lattice node to the left and half to the right (see for exampleCase 2000). For the long-

tailed dispersion, I selected the same constant proportion to move out of each node, but 

the moves were not just to nearest neighbors but to all other nodes according to an 

exponential distribution dispersal kernel. I gave fitness (discrete intrinsic rate of increase 

or ‘λ’) a parabolic shape (unimodal hump) with a value of zero where the parabola goes 

negative, since λ <0 is nonsensical. Again building the model necessitates specifying a 

physiological response model. I then compared traditional and heavy-tailed diffusion 
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while holding constant both the fitness function and the proportion of individuals moving 

(Figure 26). 

With traditional diffusion, the model gives a plateau and then a rapid drop off in 

equilibrium population size to a very tiny tail that reaches zero where fitness (λ) equals 

zero. In contrast, with long-tailed diffusion, large tails appear which show a positive 

equilibrium population size in areas where λ<1 (i.e. the definition of a sink). As a sanity 

check, replacing the exponential dispersal kernel with a Gaussian kernel produced the 

same results as the diffusion model. In short, traditional diffusion does not create creates 

the tails of the peaks-and-tails pattern nor does it set up a source-sink dynamic, but 

heavy-tailed diffusion does both. 

It is possible to invoke dispersal on a variety of time scales (which was not made 

explicit in my model above). In some cases, the time scale may be a gradual 

multigenerational process (Maurer and Villard 1994). In others, a single year may suffice 

—neotropical migrants travel distances greater than the length of the range ever year. 

Assessment of model 

Thus, dispersal explains the entire peak/drop/tail SAASR. As with the 

physiological response model, continuity comes from the underlying continuity of 

response to a continuous environmental variable. Dispersal adds an additional 

mechanism. The mere act of dispersal increases the correlation between nearby sites. The 

dispersal model fully explains the peak/drop/tail pattern, but only by embedding the 

physiological response model. 
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Supporting evidence and future tests 

Despite its long history, the idea that source-sink dynamics occur on the scale of 

species ranges is little tested. This is due to the extreme difficulty of tracking dispersal at 

these large scales (both spatial and number of individuals). Hopefully in the near future 

molecular techniques will allow a direct test of this theory (Clobert et al. 2001). Some 

indirect evidence exists. Maurer and Villard (1994) point out that the rate of growth of 

the range of the introduced European starling was most rapid in those regions where the 

sparrow’s abundance is highest today. This suggests that the rate and degree of dispersal 

correlate with spatial heterogeneity in fitness. In the experiment by Davis and coworkers 

(1998) growing Drosophila in four separate incubators at various temperatures, they 

showed that abundances were much higher in incubators (and hence temperatures) where 

a given species was least fit when tubes connected the incubators. This result suggests 

that rescue effects (Brown and Kodric-Brown 1977) may be important across the range of 

environmental conditions encountered in a species range (although the spatial scale 

involved was much smaller).  

Model 3 – Multidimensional niche 

Concept and history 

In 1984, Jim Brown presented a theory (1984, 1995, 1995) that explained two 

well-known patterns, the normal SAASR and the correlation between abundance and 

range size. Gaston and Blackburn call this (2000) the “niche breadth” hypothesis. The 

model assumes: 

1. Species possess multidimensional Hutchinsonian (1957) niches 
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2. The match between local environmental conditions and the niche 

requirements for each dimension interact to set local abundance  

3. Every environmental variable (e.g. temperature) has strong spatial 

autocorrelation but each environmental variable (e.g. temperature and 

moisture) behaves independently of the others (are uncorrelated) 

In contrast to the physiological response model, which looks at environmental response 

to a single gradient, this model emphasizes that species respond to multiple 

environmental gradients. Involving many independent gradients allows the invocation of 

the central limit theorem which suggests a normal shape in the limit of many factors, 

regardless of the original response function shapes (i.e. f ). Brown then goes on to point 

out that if an environmental variable abruptly changes (e.g. coastline) then the peak 

region of the SAASR can be close to the edge. If an environmental variable presents a 

multimodal pattern then the SAASR may be multimodal as well (Brown 1984).  

Quantitative model 

The key to making this theory more quantitative and testable is to specify whether 

the different dimensions of the niche interact via Liebig’s law (where the most limiting 

factor completely controls fitness) or in an additive or multiplicative fashion (von Liebig, 

Lehman et al. 1975, Botkin 1993). In the first paper, Brown (1984) suggests summation 

(W=f1(E1)+f2(E2)+f3(E3)+…)  and provides an analogy with the additive interaction of 

multiple genes giving a Gaussian curve for quantitative genetics. In the same paper, he 

mentions simulations performed in collaboration with Sanderson and Harvey which show 

that this model works. These simulations incorporated simple linear environmental 

gradients and gave a spatial pattern similar to the normal SAASR (Jim Brown, personal 
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communication). In a later paper (Brown et al. 1995), the authors use multiplicative 

effects of each niche (i.e. W=f1(E1)f2(E2)f3(E3)…). They develop a different simulation 

which unfortunately did not include a spatial component, merely producing a distribution 

of abundances for a single species across many sites without spatial structure. The 

authors show that various response surfaces (f) produce a lognormal-like (sigmoidal) 

rank-abundance graph so long as the number of environmental factors involved exceeds 

four or so. As the authors note, multiplying random variables should produce a lognormal 

distribution by the central limit theorem. But the authors also note that for the number of 

niche-dimensions explored, only certain combinations of parameters give the sigmoidal 

rank-abundance graph.  

To explore the effects of additive vs. multiplicative models and of parameters 

such as the number of niche dimensions in a spatially explicit context, I ran my own 

simulations. These simulations proceeded as follows: 

1. I created a rectangle measuring an arbitrary 20x20 units  

2. I created D separate lines randomly across this space to represent the D 

environmental gradients corresponding to the D dimensions of the niche. 

The lines were generated by choosing a random point and then choosing a 

random orientation (angle) of the line. 

3. I randomly generated the niche width of the species for each of the D 

dimensions by taking the absolute value of a random normal variable with 

a width (standard deviation) of σ (i.e. nichewidthi ~ |N(0,σ)| ). The units of 

σ are arbitrary units of length and are important only in relation to the size 

of the grid (20x20). 
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4. At many points organized in a lattice, I calculated the distance of the point 

from each of the D gradient lines and then divided by the nichewidthi for 

that gradient. 

5. I used this distance from each line (scaled by nichewidth) to calculate 

fitness based on one of two physiological response curves:  

a. the formula for a parabola centered over the line with a maximum 

height of one and with roots (fitness hitting zero) occurring 

nichewidthi units away from the line. Outside of the roots (i.e. 

more than nichewidthi units away from the line) fitness was a small 

value (0 or 0.1)  

b. the formula for a Gaussian normal curve with a height of one over 

the line and the inflection point of most rapid decrease of fitness 

(i.e. σ) occurring at one nichewidthi units away from the line. 

6. I added or multiplied together the fitness accrued from each of the D 

dimensions at each lattice point in space. 

7. The resulting fitness surface was plotted as a 3-D surface. 

The source code for this Monte Carlo simulation is a short routine in MATLAB and is 

included in an appendix. 

Assessment of model 

I observed the following results: 

1. With the right parameter values, all four models {additive, multiplicative} 

X {Gaussian, parabolic} can produce approximately normal-like SAASR 

patterns (Figure 27). 
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2. The average nichewidth parameter, σ, is vital. If σ is small relative to the 

average distance between lines, then the resulting pattern is merely a series 

of ridges running in different directions. Presumably, a highly skewed 

distribution of nichewidthi which produced an excess of small 

nichewidth’s (e.g. lognormal) would have similar effects, although I did 

not test this idea. 

3. Brown found a need for at least four niche dimensions, D. My model 

showed this requirement only for the additive model. With fewer than 

about four peaks, the additive model merely produces ridges. This 

shortcoming was lessened if the niche widths were all set to the same 

constant value, rather than being sampled from a normal distribution. The 

multiplicative model produces normal-like SAASRs with any number of 

niche dimensions, D (down to just 2). 

4. The results vitally depended on the independence of the directions of the 

lines in the additive model. When, by chance most of the lines were 

roughly parallel, no peak was produced (again just a series of ridges). This 

assumption may be the weakest assumption in biological terms, as many 

environmental factors are correlated. The theory may be saved because the 

real-world gradients tend to go in two general directions: East-West 

(precipitation) and North-South (temperature), leading to the intersection 

of at least two lines.  

5. The summation model generally produced much more rugose surfaces 

with many peaks in comparison with the product model. The summation 
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model also produced an insufficient amount of tail compared to 

empirically observed SAASRs.  

6. The multiplicative parabolic model depends heavily on the fitness value 

assigned to points more than nichewidthi units away from the center. If the 

value is zero, then the scale, σ, must be nearly as large as the grid (20), 

otherwise, every point is almost always at least nichewidthi units away 

from at least one line, and the resulting fitness is zero everywhere. Thus 

the multiplicative parabolic model depends on either having a non-zero 

value assigned to faraway points (for which there is not much biological 

justification), or requires very large values of σ. This translates 

biologically into the statement that most species can tolerate (in the 

absence of competition) the whole range of environmental values 

encountered across an entire continent for individual niche dimensions. 

The multiplicative parabolic model can produce multiple peaks under 

some conditions. 

In summary, the simulations suggest that Brown’s niche-width hypothesis can 

explain the full SAASR pattern. Again spatial autocorrelation comes from the 

combination of smooth changes in environmental variables and smooth physiological 

response functions. The central limit theorem produces the peak/drop/tail pattern, but 

uses the physiological response model as an assumption. 

Supporting evidence and future tests 

This model is difficult to test due to its explicit use of many factors. Generally, 

the multiplicative models seem more robust, which is also the model generally favored on 
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empirical evidence (Lehman et al. 1975, Botkin 1993). Assuming the multiplicative 

model is correct, then the nichewidth needs to be large (relative to the size of a continent, 

see point number 6 above). We do not know if this is true, since almost no one has 

measured nichewidth (measured as a linear distance). Similarly, the independence of 

multiple environmental gradients also needs to be assessed. If the SAASR of species are 

driven by just two perpendicular gradients (e.g. moisture and temperature), then Brown’s 

theory collapses to be the same as the physiological response theory. 

Model 4 - Tradeoffs 

Concept and history 

I propose a fourth model that might explain the peak-and-tail SAASR pattern. 

Unlike the multidimensional niche model, this model requires only a single 

environmental gradient. Unlike the physiological response model, this model 

incorporates the idea that physiological constraints within an organism lead to tradeoffs 

among different components of fitness. MacArthur (1972) suggested that limits to 

environmental tolerance set northern range boundaries (in the Northern hemisphere), 

while southern range boundaries are set by being competitively inferior to the less 

environmentally tolerant species found towards the tropics. To my knowledge, this paper 

is the first time this model has been extended to explain not just the edges of ranges but 

the normal SAASR pattern in abundance within the range. Unlike all other proposed 

models, this model allows for the importance of biotic factors (interspecific interactions) 

as they change along a gradient. 

Although one can imagine other components of fitness being involved, I extend 

MacArthur’s ideas here. In particular, I model a tradeoff between survival due to 
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environmental tolerance vs. fecundity due to competitive dominance and the resulting 

greater food intake. Imagine a species at the center of its range. As a species moves to a 

harsher environment (e.g. northward and colder), it becomes less tolerant of the harsher 

(for the species) environment and its survival rate goes down. As the species moves 

towards a more benign environment, its survival rate will continue to go up. Allocation of 

energy and resources to environmental tolerance comes at the cost of competitive ability. 

One clear example was found by Loehle (1998), who compared coniferous trees and 

showed that both within a species and between species freezing tolerance trades off with 

relative growth rate (advantageous for growing tall quickly and competing for light). 

Thus, at the relatively harsh edge of its range, a species will have relatively more energy 

allocated to competitive ability than those species whose ranges are centered in even 

harsher climes, and will be competitively dominant. Conversely, at the relatively benign 

end of its range, it will have relatively more energy allocated to environmental tolerance 

than other species whose ranges are centered further into the benign environment and it 

will be competitively inferior. This tradeoff between environmental tolerance and 

competitive ability in closely related species is well-known, well-documented, and seems 

to be quite common (Connell 1961, Bovbjerg 1970, Colwell and Fuentes 1975, 

Woodward 1975, Woodward and Pigott 1975, Nobel 1980, 1982, Randall 1982, 

Rosenzweig 1985, 1989, Wisheu 1998). 

Quantitative model 

What SAASR would we predict from this tradeoff? The most direct line of 

inquiry is to assemble empirically well-documented response functions into a model. Let 

E represent the environmental variable. Let x represent spatial position along a line. 
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Assume for simplicity that E is a linear function of x. In particular, without loss of 

generality, I will assume E=x. Let harsh conditions be found at large values of x, and 

benign conditions by low values of x. Let mortality be a Gompertz sigmoidal function of 

environmental conditions (Mueller 1988): µ(E)=exp(-c1 exp( - c2 E)). Let competitive 

dominance, d(x), range from 0 in the most benign conditions to 1 in the most harsh 

conditions in a linear fashion. Let rate of food intake (i.e. energy) be represented as I(x)= 

N(x)d(x)-1 similar to several other models of intake as a function of the number of 

individuals and/or dominance (Schwinning and Fox 1995, Stillman et al. 2000). Assume 

that the total number of individuals summed across all species is constant (N(x)=K). 

Assume that fecundity is a function of the amount of intake energy above a maintenance 

threshold (Beddington et al. 1976, Rees and Crawley 1989): R0(x)=max(c3(I(x)-Emaint),0). 

Assuming a monocarpic (semelparous) population, then fitness is survival × fecundity:  

r(x)=R0(x)*(1−µ(x)). Use Holt et al’s model (Holt et al. 1997) which connects fitness to 

equilibrium population size as N*(x)=r(x)/u (where N* is the equilibrium population size 

and u is the density-independent mortality factors not otherwise modeled). For a wide 

range of parameters (so long as mortality and dominance cross over in the same spatial 

region), this model gives a peak-and-tail SAASR (Figure 28). 

Assessment of model 

Thus, the tradeoff model explains the entire peak/drop/tail pattern. Like the other 

models, continuity comes from continuity of environmental variation and physiological 

response. Unlike the dispersal and multidimensional niche models, the tradeoff model 

does not assume a parabolic physiological response. Rather the tradeoff model creates the 

peak/drop/tail shape by combining a sigmoidal and a hyperbolic response (with each 
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contributing one tail).  These follow directly from choosing to model mortality and food 

intake. Other tradeoffs might involve other response functions which might or might not 

produce a peak-and-tail SAASR. Conversely, we might find other tradeoffs which 

produce the sigmoidal and hyperbolic response functions. Also, note that by modeling a 

tradeoff, we can combine two response functions. 

Supporting evidence and future tests 

There are no direct tests of the tradeoff model, although there exist a few 

suggestive pieces of evidence. This model possesses a marked skew towards the benign 

environment. In one of the few studies of directionality of skew in SAASRs, Austin 

(1987) surveyed Mediterranean-type vegetation and found that 17 out of 31 had a peak-

and-tail SAASR pattern and were skewed towards high temperature (favorable 

environment), while only 7 were symmetric and 7 were low-temperature skewed. This 

skew to benign environments could be entirely coincidental, but it is suggestive. One 

very good example of how this mechanism of trade-off in components of fitness can 

produce a normal SAASR along a gradient is given by Randall (1982) (although 

Randall’s diagrams do not show tails). Randall examined the abundance of a moth 

(Coleophora alitcolella) along an altitudinal gradient and found it displayed a normal 

SAASR (although he does not reference this literature or use these terms). Careful study 

determined that the abundance pattern was driven by an increase in paratization at lower 

altitudes and a decrease in food availability (seed capsules of a rush) at higher altitudes 

(see especially his figure 15). In this case, the trade-off is between two biotic components 

of fitness (parasitization and food), rather than the particular tradeoff that I suggested 

above. Possibly many different pairwise tradeoffs in distinct components of fitness along 
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a single environmental gradient can explain the SAASR pattern for different species and 

different gradients. In particular, it is likely that variation in biotic interactions across a 

gradient are important, something not accommodated in a pure physiological response 

model. More work like Randall’s would provide a strong test of this model. 

Assessment of the four mechanisms 
Gause (1931) said of the SAASR pattern, “In general terms, the explanation is 

simple, although it is doubtful if the full story is understood in detail for any species of 

organism”. As the above material indicates, even in general terms, the picture probably is 

not as simple as Gause thought. However, we are now at a point where we can give a 

slightly more complicated explanation of the general terms of the mechanism of the 

SAASR pattern. I started this section on mechanisms by describing four features of the 

SAASR pattern which a mechanism needed to explain: 

¾ Why are abundances spatially autocorrelated and not spatially 

independent? 

¾ What causes peaks? 

¾ What causes the intermediate (usually sharp) dropoffs in abundance from 

the peaks? 

¾ What causes the tails? 

All four models generated continuity through the continuity of environmental variation 

and physiological response. The dispersal model also suggests that dispersal will connect 

sites and provide autocorrelation. 

A parabolic physiological response function explains the peak and drop features, 

either directly, or by inclusion in a more complicated model (dispersal, multidimensional 
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niche). The tradeoffs model also explained the peak and drop features by physiological 

response, but used a combination of specialized response curves. 

In a significant shortcoming, the simplest and oldest model (physiological 

response) does not produce tails (unless the mapping from fitness (W) to equilibrium 

population size (N*), i.e. g, generates tails). The dispersal model produces tails (which 

are population sinks) by rather directly pasting tails onto the parabolic physiological 

response via heavy-tailed dispersal. The multidimensional niche model creates tails 

through a more complicated mechanism: the central limit theorem. The tradeoff model 

creates tails by invoking two specialized physiological responses that already have tails 

(the sigmoidal curve and the hyperbolic curve). 

In summary, some form of physiological response produces continuity, and the 

peak and drop portions of the peak-and-tail SAASR. But the physiological response 

model does not produce the tails. Thus, physiological response appears to be a necessary 

mechanism for producing SAASRs, but not a sufficient mechanism. Physiological 

response must be supplemented to produce tails. I have shown mathematically that at 

least four mechanisms can produce tails: dispersal, tradeoff, multidimensional niches, and 

certain forms of the g function. Which one is correct? 

We do not know which of these mechanism produces tails in real species’ ranges. 

I have suggested tests for all four mechanisms that might ultimately decide. It is also 

possible that all four factors are involved in creating tails. Some evidence exists 

supporting each mechanism. Ecologists have a long history of trying to reduce every 

question to a single explanation (Kingsland 1995), but many observed patterns are 

explained by multiple, complementary factors. The SAASR pattern could well fall into 
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this category. The appropriate mixture of the above four models might even vary from 

species to species and from region to region within the range of one species.  

Shigesada et al (1979) developed a beautiful example of a multifactored model. 

They model two closely related species that compete with each other in space. Each 

shares a preference for a particular region of space. The authors model this by a 

physiological response surface that is parabolic in shape. However, one species 

competitively dominates the other species and preempts the inferior species in the 

preferred area. Both species move through diffusion and through advection away from 

areas of low fitness. The resulting curves of equilibrium abundances across a transect 

(their figure 8) look very much like a peak-and-tail SAASR such as those found 

empirically by Whittaker. 

Implications 
The SAASR pattern is important to ecology for several reasons: some are basic 

and others are applied. Within basic ecology, a number of authors have noted that the 

SAASR pattern may in fact be important in explaining the processes driving several of 

the most well-known patterns in macroecology. For example, the interspecific local 

species abundance distribution (SAD) is an extremely old, well-known and important 

pattern in ecology (Whittaker 1965, Tokeshi 1993, Brown 1995, Gaston and Blackburn 

2000). The peak-and-tail SAASR can explain the local SAD as follows. Imagine that 

each species’ range is placed independently in space (Poisson location of peaks) and that 

abundance follows a peak-and-tail SAASR. Then, at a single point in space, if we look at 

abundances of different species, we will effectively be sampling at random from the 

SAASR pattern. Because peaks are small and tails are large, and because peaks are orders 
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of magnitude higher than tails, this will produce the well known SAD where a few 

common species have abundances orders of magnitude higher than many rare (low 

abundance) species. This explains the equivalence shape of the interspecific local SAD 

and the intraspecific spatial SAD (e.g. see Figure 6). So, if we find the mechanisms for 

the SAASR pattern and hence intraspecific variation in abundance across space, then we 

have explained the interspecific local SAD. Explaining the local SAD has been a central 

preoccupation of ecologists (Preston 1962, May 1975, Pielou 1975, Harte et al. 1999, 

Dewdney 2000, Hubbell 2001), with most explanations focusing on interspecific local 

processes. The SAASR explanation finds the mechanism in the opposite direction – 

intraspecific, large-scale spatial processes. Numerous authors have independently noticed 

the connection between the SAD and SAASR. Brown et al (1995) and Enquist et al 

(1995) describe this qualitatively. Gauch and Whittaker (1972), Hengeveld et al (1979) 

and McGill and Collins (McGill and Collins 2003)have all developed analytical models 

demonstrating the validity of this connection. Using Monte Carlo simulations, McGill 

and Collins show that the model is quite robust to minor deviations in assumptions (e.g. 

replace the normal curve by a multipeaked asymmetrical curve given by the sum of three 

Gumbel distributions and replace completely independent placement of species ranges by 

a slight clustering in the spatial placement of different species ranges). Also, McGill and 

Collins empirically tested this theory using the North American Breeding Bird Survey 

(Robbins et al. 1986, Price et al. 1995). They showed that two variables explained 87% of 

the variance (i.e R2) in rank abundance in local communities. These two variables are: 1) 

the height of the nearest peak and 2) the distance to the nearest peak (average of 682 km 

so this is autocorrelation at the scale of the species range, i.e. the SAASR pattern). 
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McGill and Collins also show that the SAASR pattern can provide an explanation 

for the correlation between range size and abundance. Brown (1984), going in the reverse 

direction, started with this correlation and developed the multidimensional niche theory 

to explain the SAASR pattern. McGill and Collins’ also show how the SAASR pattern 

can explain the distribution of ranges sizes. This distribution of range sizes suffices to 

explain the species area relationship (SPAR) at large scales (scales greater than 104 km2 

for birds), an idea also independently developed by others (Leitner and Rosenzweig 1997, 

Maurer 1999, Allen and White 2003). 

Thus, the SAASR pattern can provide an explanation for a number of the most 

famous patterns in macroecology. This makes understanding the SAASR pattern vitally 

important to basic ecology. 

The SAASR pattern also has major implications for conservation biology. 

Specifically, the strong, non-random variation in abundance across a species’ range (2-3 

orders of magnitude in birds) has important implication for conservation as first noted by 

Brown et al (1995). Presence/absence data of many species is commonly combined 

together to identify areas likely to contain many species which can then be prioritized for 

conservation in a process known as GAP analysis (Scott et al. 1993). GAP analysis deals 

only with presence/absence data, explicitly rejecting any data on abundance (Jennings et 

al. 1997). This is worrying since the abundance in the tails is quite low, and the risk of 

extinction increases greatly with low abundance (MacArthur and Wilson 1967, Goel and 

Richter-Dyn 1974, Gilpin and Soule 1986, Pimm et al. 1988). Reserves in the tails may 

be orders of magnitude less valuable than reserves in the peaks. Where possible, 

conservation studies need to move beyond mere presence and absence data. 
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The main reason for using presence/absence data instead of abundance data is the 

time and dollar cost of obtaining data comparable to that found in the BBS. Conservation 

planning should not be put on hold in cases where abundance data is unavailable. But the 

SAASR pattern may also contain a partial solution to difficulties in obtaining abundance 

data across an entire species range. In particular, understanding the degree of structure in 

the peak-and-tail SAASR pattern suggests that, if we are clever, we ought to be able to 

identify peaks and tails with much less sampling effort than previously thought. This will 

allow for the development of more sophisticated models that predict not just presence of 

a species but its abundance in a hypothetical reserve (e.g. Bolger et al. 1997), and 

ultimately its extinction risk.  

Thinking about the mechanisms behind the SAASR pattern has even further 

implications for conservation biology. Lomolino and Chanell (1998) have shown that 

when species are reduced to a very small fraction of their range, the remnant population 

is usually found in a peripheral region largely due to chance processes (Channell and 

Lomolino 2000). The patterns presented in this paper give conflicting interpretations of 

their work. On the one hand, given the random location of peaks, these retractions may 

still be towards peaks, contrary to the interpretation most often given to these results. On 

the other hand, given the proportion of peaks to tails and a model of chance contagion 

processes, this suggests that most often (but not always) the species will be found in a tail 

region. The exact effect of relict populations being in tails depends on which mechanisms 

are dominant in creating the tail.  If one of the physiological response, multidimensional 

niche, or tradeoff models cause tails, then this implies that remnant populations will be in 

very poor habitat for the species. If the dispersal model plays a large role in creating the 
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tails, then this has even more dire implications. Reserves located in the tails are sinks 

under this theory. Once the sources (peaks) have been destroyed, the sinks are doomed to 

extinction in the long run (Lawton 1993, Lawton 1996). 

Summary 
This paper started with a review of the literature on SAASRs. I demonstrated that 

the idea in a qualitative fashion is quite old. Starting in the 50’s and accelerating into the 

70’s, ecologists started to describe the pattern more quantitatively as “normal”. Much of 

the evidence at this time came not from transects across a species range but across an 

environmental gradient. As the pattern began to be called normal, others began to object, 

because the normal curve is a special curve and thus makes the “normal” SAASR a 

strong statement. 

I proposed that about half the features implied by the normal SAASR are true and 

about half are false. This suggests that progress on the study of the SAASR pattern will 

be greater if we can more accurately name the pattern. I suggested the peak-and-tail 

SAASR as a more accurate description, and I list the assumptions of the peak-and-tail 

SAASR. 

I then tested these features using the North American breeding bird survey. All of 

the features of the peak-and-tail SAASR were shown to be true, even in comparison to 

several null models of spatial autocorrelation. The idea of abundance being highest in the 

center was also shown to be false. 

Finally, I explored three previously proposed theories and one new theory of the 

mechanisms which underlie the peak-and-tail SAASR pattern. I made the existing models 

more quantitative which led to predictions and possible tests. The physiological response 
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mechanism seems central but probably needs to be supplemented by another mechanism 

to produce tails. Much work is needed to test which mechanisms are actually involved. 

The SAASR explains many well-established, important patterns of macroecology, 

and empirical tests support the SAASR mechanism. The SAASR also has strong 

implications for conservation biology. The SAASR emphasizes the importance of using 

abundance data instead of presence/absence data and provides a means to reduce the 

costs of predicting abundance across space. The SAASR pattern also warns 

conservationists to worry about which mechanisms cause tails when reserves are located 

in tails. 
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Appendix 1 – MATLAB Source code for test of the Brown 
Niche Hypothesis 
function testbrownclt(n,scale,bBeyond,bNicheLines) 
% testbrownclt(#gradients [5],nichescale vs grid 20x20 1], 
bBeyondEdges[0], bDrawNicheLines[0]) 
if nargin<1, n=5; end 
if nargin<2, scale=1; end 
if nargin<3, bBeyond=0; end 
if nargin<4, bNicheLines=0; end 
 
%generate random lines as a point and an angle 
if bBeyond, spacescale=60; else spacescale=20; end 
lnX=rand(1,n)*spacescale-10; 
lnY=rand(1,n)*spacescale-10; 
if scale>0, 
    nichewidth=abs(randn(1,n)*scale); 
else 
    nichewidth=repmat(scale,1,n); 
end 
lnang=rand(1,n)*2*pi; 
% calculate second point on the line 
lnX2=lnX+1; 
lnY2=lnY+tan(lnang); 
% get slope & intercept 
m=(lnY2-lnY)./(lnX2-lnX); 
b=lnY-m.*lnX; 
gridsize=21; 
gridsize=61; 
x=linspace(-10,10,gridsize); 
y=linspace(-10,10,gridsize); 
[X,Y,L]=meshgrid(x,y,1:n); 
dist=abs((m(L).*X-Y+b(L))./sqrt(m(L).^2+1)); 
nw=repmat(reshape(nichewidth,[1 1 length(nichewidth)]),[gridsize 
gridsize 1]); 
W=(dist./nw+1).*(1-dist./nw); %parabola with zeros at dist/nw and 
height of 1 
parabolicmin=0; 
%W=W+10; 
 
figure; 
X=squeeze(X(:,:,1)); 
Y=squeeze(Y(:,:,1)); 
subplot(2,2,1); 
plotfitness(X,Y,sum(max(W,parabolicmin),3)); 
title('Sum');xlabel('X');ylabel('Y'); 
zlabel('Parabolic'); 
drawlines(bNicheLines,m,b,nichewidth); 
subplot(2,2,2); 
plotfitness(X,Y,prod(max(W,parabolicmin),3)); 
drawlines(bNicheLines,m,b,nichewidth); 
title('Product');xlabel('X');ylabel('Y'); 
subplot(2,2,3); 
plotfitness(X,Y,sum(exp(W),3)); 
drawlines(bNicheLines,m,b,nichewidth); 



McGill            of  57    72

xlabel('X');ylabel('Y'); 
zlabel('Gaussian'); 
subplot(2,2,4); 
plotfitness(X,Y,prod(exp(W),3)*1e10); 
drawlines(bNicheLines,m,b,nichewidth); 
xlabel('X');ylabel('Y'); 
 
 
function plotfitness(X,Y,Z) 
surf(X,Y,Z); 
%contourf(X,Y,Z); 
hold on; 
[c,h]=contour(X,Y,Z,[0 0]); 
set(h,'LineWidth',2,'LineStyle','-.','EdgeColor','w'); 
colorbar; 
 
 
 
function drawlines(bNicheLines,m,b,nichewidth) 
if length(m)>5 | nichewidth>50, return; end; 
if ~bNicheLines, return;end; 
hold on; 
x=linspace(-10,10,5); 
for ln=1:length(m), 
    y=m(ln).*x+b(ln); 
    h=line(x,y,vector(1000,x)); 
    set(h,'LineWidth',nichewidth(ln)/2); 
end 
axis([-10, 10, -10,10]); 



  

Tables 
 LS mc r2 Power r2 Power c Skew LnSkw %Peak %Tail %Empty

Real (n=305) 0.891 0.886 0.166 2.895 0.028 0.058 0.772 0.497
Real (n=212) 0.86 0.902 0.138 2.998 -0.18 0.067 0.717 0.44
Randomized 0.86 0.902 0.138 2.998 -0.18 0.067 0.717 0.44
Irruption 0.652 0.623 0.053 5.468 5.468 0.03 0.969 N/A
Gauss s=0 0.857 0.948 0.27 1.45 -0.04 0.099 0.688 N/A
Gauss s=0.1 0.863 0.948 0.224 1.504 -0.04 0.002 0.995 N/A
Gauss s=0.25 0.851 0.938 0.161 1.79 -0.04 0.002 0.99 N/A
Gauss s=0.5 0.825 0.908 0.091 2.925 -0.03 0.003 0.982 N/A
Gauss Pk on Edge 0.601 0.986 0.35 1.066 -0.49 0.147 0.609 N/A
Gauss 2 Peaks 0.33 0.994 0.305 1.119 -0.97 0.094 0.619 N/A
fBM H=0 -0.06 0.944 1.017 0.009 -2.93 0.11 0.108 N/A
fBM H=0.25 0.077 0.944 1.032 0.01 -2.32 0.119 0.116 N/A
fBM H=0.5 0.191 0.952 1.042 0.01 -1.82 0.142 0.142 N/A
fBM H=0.75 0.27 0.961 1.039 0.004 -1.57 0.163 0.172 N/A
fBM H=0.95 0.305 0.97 1.068 0 -1.4 0.197 0.192 N/A

Table 1 – Distribution of intraspecific abundances across observation sites (routes). This table presents summary statistics 

(averages across 212 replicates) for eight different statistics that describe the distribution of abundances found across a species’ range, 

independent of any spatial patterns. LS mc r2  gives a mean-corrected r2 for how well the logseries distribution fits the data. The 

Power r2 gives the same statistic for the power distribution. The Power c statistic gives the exponent of the cdf in the power 

distribution. Skew gives the observed skew of the distribution of abundances, while LnSkew gives the observed skew of log 

abundances. %Peak gives the percentage of sites (routes) that are a peak, arbitrarily defined as 70% of the maximum abundance on a 

log scale (i.e. N ≥exp(0.7*log(Nmax))=Nmax
0.7. %Tail gives the corresponding percentage of routes in the tail, arbitrarily defined as 



  

20% of Nmax on a log scale, i.e. . N ≤exp(0.2*log(Nmax))=Nmax
0.2. %Empty gives the percentage of routes within the convex hull range 

that had no observations of the species at the route. Empty sites are not modeled in the null models and are treated as a very low 

abundance (0.1 or ½ bird in 5 years) in most of the rest of the statistics. Note that the Randomized and Real (n=212) cases are identical 

since the Randomized null model merely spatially reshuffled the data from the same set of real species. 



  

 

 NbrR LnNbR %PnP %PnT %TnP %TnT 
Real (n=305) 0.472 0.615 0.202 0.473 0.028 0.857 
Real (n=212) 0.527 0.685 0.245 0.362 0.028 0.832 
Randomized 0 0 0.065 0.714 0.066 0.717 
Irruption -0.01 -0.01 0.024 0.975 0.03 0.969 
Gauss s=0 0.998 0.997 0.871 0 0 0.963 
Gauss s=0.1 0.988 0.994 0.04 0.868 0.001 0.995 
Gauss s=0.25 0.938 0.978 0.029 0.859 0.002 0.991 
Gauss s=0.5 0.783 0.926 0.029 0.834 0.003 0.984 
Gauss Pk on Edge 0.998 0.998 0.916 0.002 0 0.969 
Gauss 2 Peaks 0.998 0.998 0.806 0 0 0.954 
fBM H=0 0.537 0.48 0.234 0.034 0.035 0.232 
fBM H=0.25 0.791 0.742 0.403 0.008 0.008 0.4 
fBM H=0.5 0.916 0.886 0.581 0.002 0.002 0.579 
fBM H=0.75 0.967 0.949 0.706 0.001 0.001 0.712 
fBM H=0.95 0.983 0.971 0.778 0.001 1 0.00 0.772 

Table 2 – Smooth and continuous nature of data and null models This table presents data that measures the degree of 

smooth, continuous change in abundance across space of the different models. NbrR gives the Pearson r statistic of correlation 

between a given site (route’s abundance) and the average abundance at all of its immediate neighbors in a Delaunay triangulation, 

while LnNbrR gives the identical statistic except the correlation was calculated after log transformation. %PnP gives the average % 

of nearest neighbors which are a peak given that the target site is a peak. %PnT gives the percentage of nearest neighbors that are 

tails, given that the target site is a peak, and so on (%TnP gives % of nearest neighbors that are peaks given that the target site is a 

tail). 



  

 ACmid% %dist 
Real (n=305) 3463.0 0.843
Real (n=212) 3556.0 0.813
Randomized 4111 0.748
Irruption 416.2 0.79
Gauss s=0 350 0.028
Gauss s=0.1 350 0.085
Gauss s=0.25 350 0.131
Gauss s=0.5 350 0.167
Gauss Pk on Edge 650 0.919
Gauss 2 Peaks 350 0.62
fBM H=0 30.47 0.666
fBM H=0.25 29.35 0.694
fBM H=0.5 29.23 0.7
fBM H=0.75 30.14 0.677
fBM H=0.95 29.19 0.676

Table 3 – Statistics on distance of highest peak from center of range. The ACmid% statistic gives the average distance at 

which autocorrelation was most negative (i.e peak to tail). The numbers are only comparable within groups (i.e. first 4 models, the 

Gauss models, the fBM models). The %dist statistic describes how far the peak is from the center of the species’ range as a 

percentage of the radius (calculated as the squareroot of the area of  the convex hull divided by π); a value of 0 indicates at the center 

and a value of 1 indicates on the edge. In theory values greater than 1 are possible for the first 4 models which may have oblong 

ranges.  



  

 

 Par r2 LPar r2 Lquarr2 Trns1 T1 σ T1 z Trns2 
Real (n=305) 0.187 0.293 0.408 0.617 3.033 2.34 0.831
Real (n=212) 0.2 0.333 0.445 0.597 2.925 2.535 0.821
Randomized 0.019 0.02 0.056 0.469 2.951 7.771 0.786
Irruption 0.023 0.023 0.064 0.679 0.685 1.881 0.987
Gauss s=0 0.749 1 1 0.999 0 2.007 0.999
Gauss s=0.1 0.736 0.994 0.994 0.989 0 2.751 0.971
Gauss s=0.25 0.676 0.968 0.968 0.924 0.002 3.273 0.904
Gauss s=0.5 0.502 0.884 0.885 0.786 0.348 1.862 0.805
Gauss Pk on Edge 0.934 1 1 0.999 0 1.981 0.999
Gauss 2 Peaks 0.59 0.929 0.987 0.531 1.816 0.121 0.284
fBM H=0 0.02 0.018 0.073 0.182 0.312 0.436 0.216
fBM H=0.25 0.064 0.057 0.194 0.257 0.559 0.411 0.253
fBM H=0.5 0.112 0.104 0.348 0.358 0.697 0.484 0.294
fBM H=0.75 0.158 0.145 0.493 0.392 0.926 0.509 0.332
fBM H=0.95 0.193 0.176 0.585 0.469 0.85 0.692 0.409

Table 4 – Fitting normal curves to the models These statistics all describe fitting smooth continuous curves to the data. Par 

r2 gives the proportion of variance explained by fitting a 2-D parabola (quadratic equation) to the abundances. Lpar r2 gives the same 

statistic with the abundances log transformed first. Note that a parabola in log space is identical with the Gaussian normal curve. 

Lquarr2 gives the goodness of fit of log transformed abundances to a quartic (4th degree) polynomial – the smallest degree that can 

have two peaks with tails on both edges. Trns1 gives the r2 for the fit of a modified Gaussian function (N=c1 exp(-(|x-c2|/σ)z) to the 1-

D transect from the point of highest abundance within the range to the farthest point along the range boundary. The two variables T1σ 



  

and T1z gives the respective parameters in this function and are both measures of how sharp and wide the peak is. Note that z=2 is the 

Gaussian case. Trns2 gives the r2 fit for maximum of two modified Guassian functions as described in the text. 



  

 

 LS MS RS LT MT RT Ushap r2 u-l u-m u-r 
Real (n=305) 0.613 0.38 0.085 0.908 0.761 0.36 0.232 0.659 0.317 -0.13 0.081
Real (n=212) 0.721 0.477 0.113 0.952 0.807 0.433 0.254 0.717 0.358 -0.14 0.112
Randomized 0 0 0 0.061 0.263 0.155 0.009 0.133 0 -0.02 0.014
Irruption 0 0 0 0.028 0.136 0.018 0.018 0.521 0 -0.02 0.067
Gauss s=0 1 1 1 1 1 1 1 0.997 0.95 -0.46 0.621
Gauss s=0.1 1 1 1 1 1 1 1 0.997 0.934 -0.46 0.611
Gauss s=0.25 1 1 1 1 1 1 1 0.997 0.856 -0.42 0.561
Gauss s=0.5 1 1 1 1 1 1 1 0.996 0.638 -0.31 0.414
Gauss Pk on Edge 1 1 0 1 1 0 0 0.999 0.957 -0.69 -0.64
Gauss 2 Peaks 1 1 1 1 1 1 1 0.998 0.966 -0.37 0.434
fBM H=0 0.028 0.183 0.061 0.849 0.311 0.141 0.004 0.878 -2.66 -0.04 -0.01
fBM H=0.25 0.33 0.301 0.084 1 0.367 0.146 0.084 0.932 -6.93 -0.07 -0.08
fBM H=0.5 0.82 0.344 0.075 1 0.481 0.117 0.047 0.955 -4.88 -0.14 -0.19
fBM H=0.75 1 0.292 0.084 1 0.415 0.084 0.061 0.976 -5.12 -0.22 -0.34
fBM H=0.95 1 0 0.33 0.08 1 0.45 0.089 0.037 0.981 -1.55 -0.26 -0.37

Table 5 –Autocorrelation structure LS indicates that the bins 3,4, & 5 on the left are statistically significantly positive. RS 

indicates that the bins 2nd, 3rd and 4th from the right are statistically significantly positive. MS indicates that the 3 bins centered around 

the lowest observed r are all statistically significantly negative. LT indicates a trend (bins 2,3, & 4th from the left are >0), RT indicates 

a trend on the right (bins 2nd,3rd and 4th from right are >0), and MT indicates that the 3 bins in the middle are all less than zero.
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Figure 1 – Four different models of noise for SAASR. For simplicity, these 

examples use the Gaussian SAASR even though we know it is not precisely true. See the 

text for detailed descriptions.  
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Figure 2 – Demonstration that the definition of the # peaks is subjective. 

Mathematically, if we are given the smooth solid line, there is a well defined number of 

peaks (where the first derivative is zero and the 2nd derivative is negative  — in this case 

3 peaks). In practice, for a given question we may not wish to consider all of these as true 

peaks. The problem becomes even more complicated when we have only a discrete 

sample from this continuous function and the sample has noise, as shown by the asterisks. 



  

 

Figure 3 – Spatially random null models  Two null models that are random with 

respect to space and show no spatial autocorrelation. The first model took empirically 

observed SAASR patterns and reshuffled the abundances randomly. The Irruption model, 

set a low abundance (N=1) everywhere, and then randomly chose 8 points to have a high 

(N=50) abundance. 



  

 

Figure 4 – Gaussian null models This diagram shows a null model based on the 

Gaussian bell curve across space. The simplest model is a bell curve with the peak 

centered. Various levels of noise, σ, were also added. Because of the effects on 

autocorrelation structure, I also modeled cases with the peak at the edge and with two 

peaks.



  

 

Figure 5 – fBM null model for different values of H This diagram shows 

samples of the randomly generated surfaces of a fractal Brownian Motion process 

(Mandelbrot 1982) used as null models of spatial autocorrelation. H=0 corresponds to 

nearly no spatial autocorrelation (white noise), while H=1 corresponds to very high local 

autocorrelation (random walk). 
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Figure 6 – Intraspecific distribution of abundances. Histogram of abundances 

for the species Dickcissel over all routes where the species is observed. 
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Figure 7- Distribution of area of peaks, tails and intermediate areas as a 

percentage of total range area for real species. This diagram shows the distribution of 

the proportion of a range that is classified as peak (>70% of the maximum abundance on 

a log scale), tail (<20% of the maximum abundance on a log scale), and intermediate 

(>20%, <70%). For a given species these three numbers add up to 1. The 4th graph shows 

the percentage of cites within the species’ convex hull range at which no individuals were 

observed (generally treated as an abundance of 0.1 in the rest of this paper and included 

as a tail in this diagram). In this and all following histograms, the solid vertical bar 

represents the mean. The dotted vertical bar represents the median, and the two dashed 

vertical bars represent the 95% inclusion interval (95% of the values are inside this 

range). 
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Figure 8 – Distribution of measures of smooth variation in abundances 

across a range for actual species ranges. These measures are as described in Table 2.  
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Figure 9 – measures of variation in contrast between peak abundances and 

tail abundances This diagram shows the distribution of ratios between peak abundances 

and tail abundances. The top figure shows the highest abundance observed for a species 

divided by the lowest abundance. The second figure shows the distribution just over the 

range 0-1000 (cases larger than 1000 appear in the 900-1000 bar). The “Peak cutoff vs. 

min” diagram shows the peak cutoff (70% of the maximum abundance on a log scale) vs. 

the minimum observed abundance. 
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Figure 10- Distribution of measures of location of peak abundance relative to 

the center of the range for actual species ranges. :  %DistFromCenter gives the 

distance of the highest peak in abundance from the center of the range calculated as a 

percentage of the range radius (square root of range area divided by π). The average is 

0.813674 with 95% of values in the range (0.189666-1.98611)  and a median of 

0.748877. The periphery (of the convex hull, i.e the range boundary), consists on average 

of 7.5% peaks, and 71.4% tails which is quite close to the average over the whole range 

of 6.7% and 71.7% respectively. 
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Figure 11 – measure of abundances for different portions of the range. Four 

concentric rings were draw for each species range. QCTR contains the 25% of sites 

furthest from the edge, while QEDGE contains the 25% closes to the convex hull range 

boundary. Q2 is closer to the center than Q3. The abundance in each of these rings was 

averaged and then divided by the average for the whole species. An index of 1 indicates 

no deviation of a given ring from the average for the whole range. Although there is 

considerable variation (presumably based on which ring contains the peak), on average 

all four rings average within 0.01 of 1.0, indicating that all parts of a range have an equal 

chance of containing high or low abundances. 
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Figure 12 – Distribution of measures of goodness of fit of Gaussian and 

quasi-Gaussian functions to abundances of actual species ranges This figure gives the 

distribution for actual species ranges behind the averages reported in Table 4. LPar r2 

gives the r2 for log transformed data fitted by a parabola (equivalent to fitting a Gaussian 

surface in arithmetic space). Similarly, Lquar r2 gives the r2 for fitting a quartic surface 

(polynomial of order 4). Trns1 gives the r2 for fitting a modified Gaussian function to a 

1-Dimensional transect from the highest abundance to the farthest edge.
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Figure 13 – Distribution of the shape of the modified Gaussian curve fit to a 

1-D transect of data Trans1σ describes the width of the peaks. Trans1z  describes the 

rate of drop-off (z=2 matches the normal curve, while higher values are more 

leptokurtic). 
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Figure 14 – Spatial autocorellograms for spatially randomized null models 

The autocorrelograms for the four null models presented in Figure 3. The vertical axis 

gives a measure of correlation roughly analogous to Pearson’s r, ranging from –1 to 1. 

The horizontal axis gives the distance between points (spatial lag), rescaled such that the 

greatest distance is 1. The paired dotted lines give a 95% confidence interval. 
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Figure 15 – Spatial autocorrelograms for Gaussian null models The 

autocorrelograms for the four null models presented in Figure 4. The vertical axis gives a 

measure of correlation roughly analogous to Pearson’s r, ranging from –1 to 1. The 

horizontal axis gives the distance between points (spatial lag), rescaled such that the 

greatest distance is 1. The paired dotted lines give a 95% confidence interval. 
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Figure 16 – Spatial autocorellograms for fBM nullmodels The 

autocorrelograms for the four null models presented in Figure 5. The vertical axis gives a 

measure of correlation roughly analogous to Pearson’s r, ranging from –1 to 1. The 

horizontal axis gives the distance between points (spatial lag), rescaled such that the 

greatest distance is 1. The paired dotted lines give a 95% confidence interval. 
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Figure 17 – Average spatial autocorrelograms for empirical data and null 

models. Most of these lines represent the average of 212 different spatial 

autocorrelograms. The errorbars denote one standard error. The interpretation of this 

figure is described in the text under the heading “Results - Autocorrelation”. 
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Figure 18- Sample of spatial autocorrelograms for empirical data This 

diagram gives a random sample of 40 autocorrelograms for actual species SAASR data. 

The interpretation is discussed in the text. 
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Figure 19 – Autocorrelation structure of empirical SAASR – This figure gives 

the distribution of the left, right, and middle (lowest point) correlation values for 

autocorrelograms calculated on 212 species of bird. This gives detail on data provided in 

Table 5. 
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Figure 20 – Number of peaks This figure gives a histogram of data on the 

number of peaks in empirical species SAASRs. #PKS gives the number of peaks 

identified. #PKS>10% denotes only large peaks (peaks containing at least 10% as many 

routes as the largest peak for the species). % in largest  gives the % of all peak routes 

which appear in the largest peak. % in 2 largest  gives the % of all peak routes which 

appear in the two largest peaks for a given species. 



  

 

Figure 21 – Cooper’s hawk This figures shows various aspects of the SAASR 

pattern for the species Cooper’s hawk. Note the irruptive nature of the SAASR pattern. 

The top left figure gives a map of species abundances observed in the BBS. Lighter 

colors represent higher abundances as denoted by the colorbar to the right. The thick 

dashed line denotes a transect taken from the highest abundance to the farthest away 

corner. The bottom left figure gives abundances along this transect. The thick red line 

represents the locally interpolated values. The two dotted lines indicates the maximum 

and minimum abundance which were used in interpolating this value (out of the three 

points used). The dashed line shows the abundances predicted by fitting a modified 

Gaussian function. The smooth solid line shows the abundances predicted by fitting a 

combination of two Gaussian functions. The figure at the bottom right gives the 

autocorrelogram for this species. 



  

 

Figure 22 canyon wren As for Figure 21 but for the canyon wren. Note the 

irruptive nature of the SAASR pattern. 



  

 

Figure 23 dickcissel As for Figure 21 but for the dickcissel. Note the nearly 

Guassian nature of the SAASR pattern (albeit with noise). 



  

 

Figure 24 scissor-tailed flycatcher As for Figure 21 but for the scissor-tailed 

flycatcher. Note the nearly Guassian nature of the SAASR pattern (albeit with noise). 



  

 

Figure 25 Red-bellied Woodpecker As for Figure 21 but for the Red-bellied 

woodpecker. Note that the SAASR is intermediate between irruptive and Gaussian. 
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Figure 26 – Comparison of diffusion models This figure shows the output from 

two simulations of diffusion. The dotted line shows the physiological response surface 

(fitness). The solid line shows equilibrium abundances across space. The dash-dot line 

shows fitness = 1 (constant population size). The figure on the left shows traditional, 

local diffusion. The right figure is identical but it shows the results of heavy-tailed 

diffusion. This figure clearly has a tail in abundance with a source-sink dynamic. 



  

 

Figure 27 – Tests of Brown’s niche hypothesis model of SAASRs Abundance 

surfaces (SAASRs) for four variations of Brown’s model. The top row has a parabolic 

fitness response surface, the bottom row has a Gaussian response surface. The left 

column uses an additive model. The right column uses a multiplicative model. 
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Figure 28 – Tradeoff along gradient model of SAASR Output from 

calculations of a model presented in the text for tradeoffs in environmental tolerance and 

competitive tolerance along a gradient. The thick dotted line shows equilibrium 

abundance across the gradient (N*). The two sigmoidal dashed lines show survivorship 

and mortality. The straight dotted line shows dominance. The two solid exponential-

shaped lines show intake (which is a function of dominance) and the fecundity which is a 

linear function of intake. N* is the product of fecundity and survivorship. 




