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Abstract
Continuous-trait game theory fills the niche of enabling analytically
solvable models of the evolution of biologically realistically complex
traits. Game theory provides a mathematical language for under-
standing evolution by natural selection. Continuous-trait game the-
ory starts with the notion of an evolutionarily stable strategy (ESS)
and adds the concept of convergence stability (that the ESS is an evo-
lutionary attractor). With these basic tools in hand, continuous-trait
game theory can be easily extended to model evolution under con-
ditions of disruptive selection and speciation, nonequilibrium pop-
ulation dynamics, stochastic environments, coevolution, and more.
Many models applying these tools to evolutionary ecology and co-
evolution have been developed in the past two decades. Going for-
ward we emphasize the communication of the conceptual simplicity
and underlying unity of ideas inherent in continuous-trait game the-
ory and the development of new applications to biological questions.

403



ANRV328-ES38-17 ARI 1 August 2007 20:31

INTRODUCTION

Life is a game. Games have players, strategies, and payoffs. In the evolutionary game,
individual organisms are the players, their heritable phenotypes are their strategies,
and their per capita growth rates (fitness) are their payoffs. The game happens be-
cause the fitness of an individual is simultaneously influenced by its own strategy, the
strategies of others, and other features of the abiotic and biotic environment. Evolu-
tionary game theory provides a key mathematical language to understanding natural
selection better. Here we review this approach and describe its current applicabil-
ity within the context of adaptive dynamics, evolutionary stability, and continuous
(quantitative) traits.

Evolutionary game theory has advanced greatly from Maynard Smith & Price’s
(1973) pioneering concept of the evolutionarily stable strategy (ESS). Game theory
has become the lingua franca of most concepts in animal behavior (Reeve & Dugatkin
1998) relating to mate choice, breeding strategies, animal contests, social groups, and
the evolution of cooperation via forms of reciprocal altruism. Such matrix games as
“Hawk-Dove” and “Prisoner’s Dilemma” are used to teach many aspects of animal
behavior. The 1970s also saw evolutionary game theory applied to continuous traits
such as body size and other characteristics that might influence population dynam-
ics within species and between species (Lawlor & Maynard-Smith 1976). Just as in
animal social behaviors, evolutionary game theory provides an obvious mathematical
language for evolutionary ecology. Evolutionary ecology (broadly defined) explicitly
requires the use of conceptual and modeling tools that can make predictions about
evolutionary trajectories and outcomes of selection on heritable quantitative traits
such as flowering times, age at first reproduction, optimal habitat choice, etc.

Despite advances in the past 20 years, continuous-trait evolutionary game theory
remains outside the mainstream of evolutionists, evolutionary ecologists, and their
textbooks and courses. Why the disjunction between rapid advances in evolutionary
game theory and the slower integration of these advances into the mainstream? First,
these new applications fall into what has traditionally been the purview of population
and quantitative genetics and must therefore displace a resident approach. Second,
the literature on continuous-trait evolutionary game theory can be a confusing Babel
of terms, concepts, definitions, and notations. Third, it has been a while (Vincent
& Brown 1988) since evolutionary game theory has been reviewed in a succinct and
accessible manner. This review aims to address these issues.

HISTORY OF GAME THEORY

Most people (Luce & Raiffa 1957) consider von Neumann the father of game theory
(von Neumann & Morgenstern 1944). Primarily interested in economic applications,
von Neumann and other pioneers dealt primarily with two-player zero-sum games.
In a zero-sum game, one player’s gain matches another’s loss. Although accurate for
some games (for example, casino games), most evolutionary games are likely nonzero.

John Nash (1950) developed the Nash equilibrium in a two-page paper that
brought him a Nobel prize. In a Nash solution all players possess a no-regret strategy.
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No single player can increase personal payoffs by unilaterally changing strategies. The
Nash equilibrium revolutionized game theory. It applied equally well to many-player
games, asymmetric games, and non-zero-sum games.

Price, a graduate student of Maynard Smith, introduced two seminal ideas in evo-
lution: evolutionary game theory and the Price equation (Frank 1997) before aban-
doning the field for other interests, studying Christianity, helping the homeless, and
eventually dying homeless himself (Frank 1997). Maynard Smith took it upon himself
to publish Price’s idea (Maynard Smith & Price 1973) and followed with a seminal
book (Maynard-Smith 1982). As Maynard Smith notes, the idea of an ESS had been
presaged by the study of sex ratios as a frequency-dependent problem (Fisher 1930,
Hamilton 1967). An ESS was defined as a strategy (or set of strategies) that, when
common in the population, cannot be invaded by rare alternative strategies—a uni-
lateral change in strategy by one mutant individual will not increase its payoff. Hence,
the Nash equilibrium is embedded within the ESS concept (see Bulmer 1994 for a
discussion of the similarities and differences), although Maynard Smith developed
the idea independently.

Advances continued apace. Auslander et al. (1978) applied the Nash equilibrium to
evolutionary games with continuous traits. Several researchers, recognizing the utility
of continuous-trait game theory, merged Maynard Smith’s evolutionary game theory
with more conventional game theory (Brown & Vincent 1987a,b; Roughgarden 1976;
Vincent & Brown 1984). In addition, models emerged viewing an ESS as the endpoint
of a dynamical evolutionary process (Christiansen 1991; Eshel 1983; Maynard-Smith
1981, 1982; Vincent & Brown 1984, 1987; Vincent et al. 1993). Economists too have
realized the power of this evolutionary approach to game theory and incorporated it
into their work (Fudenberg & Harris 1992, Gintis 2000, Hofbauer 1996).

Within biology, continuous-trait evolutionary game theory moved in two direc-
tions. First, some evolutionary ecologists adapted the tools to solve specific problems
of biological interest (Figure 1). We examine some of this work at the end of this
review. Second, a group of scientists, primarily in continental Europe, advanced the
dynamic aspect of evolutionary game theory, renaming the subject adaptive dynamics
(Diekmann et al. 1996, Dieckmann & Law 1996, Hofbauer 1996). But with the new
insights has come a confusing proliferation of similar and/or identical definitions
and terms. As we shall see, the new millennium has continued to refine, advance,
and apply the mathematical tools of adaptive dynamics and continuous-trait game
theory.

CONTINUOUS-TRAIT GAMES

Continuous-trait games consider strategies that form a mathematical continuum (that
is, a section of the real number line), such as. [0,1] or (−∞, +∞). This is in contrast
to discrete (also called matrix) games where the set of strategies is a finite, unordered
list (for example, fight, run, wait). Most traits studied in evolutionary ecology are
continuous (or nearly so), such as date of first flowering, time to maturity, an animal’s
body size, the bill dimensions on a bird, or the allocation of resources to roots, stems,
and reproductive tissues on a plant. The developments of matrix and continuous
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Figure 1
Growth of articles using the terms “ESS” or “Adaptive dynamics” over time. The ISI Web of
Science was queried for the number of articles containing either “ESS OR
EVOLUTIONARILY STABLE STRATEG∗” or “ADAPTIVE DYNAMICS” in their titles,
abstracts, or keywords for five year periods. Note that this includes matrix games as well as
continuous-trait games owing to the difficulty in separating them out. The years 2005–2009
are estimated based on multiplying the totals for 2005–2006 by 5/2 (probably an
underestimate if rates are in fact increasing). The search was limited to 13 mainstream
ecology, evolution, and evolutionary ecology journals to avoid medical and engineering terms
that also abbreviate to “ESS”: American Naturalist; Annual Review of Ecology, Evolution, and
Systematics; Ecology; Ecology Letters; Evolution; Evolutionary Ecology; Evolutionary Ecology Research;
Journal of Animal Ecology; Journal of Ecology; Trends in Ecology Evolution; Oikos; Oecologia; and
Theoretical Population Biology. In keeping with our focus on evolutionary ecology, journals
primarily focused on behavior were intentionally excluded although they contain a great many
additional articles using game theory.

games have followed somewhat independent paths, with various researchers relating
the two fields (Day & Taylor 2003, Vincent & Cressman 2000). Although our focus is
on continuous traits, the Supplemental Appendix (follow the Supplemental Material
link from the Annual Reviews home page at http://www.annualreviews.org/) shows
how matrix games are a special case of continuous-trait games.

Basic Tool

The recipe for an evolutionary game begins with an ecological model of population
dynamics where we define fitness as per capita growth rate (Crow & Kimura 1970):

W (u, U, N ) = 1
N

dN
dt

, 1.
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where:

� W denotes fitness. This has a long tradition in population genetics, but many
alternative notations have been used in the literature on continuous-trait game
theory, including F, G, ρ, σ, etc.

� u denotes the strategy played by the player of interest. Here a strategy is syn-
onymous with some heritable trait such as body size or flowering date.

� U denotes the strategy/phenotype played by the opponent, the resident popu-
lation.

� N denotes the population size of the resident population.

The Supplemental Appendix provides an example of deriving and developing a
continous game: W(u, U, N ).

Making fitness a function of various subsets of the u/U/N trio produces a va-
riety of established approaches as special cases. W(N ) gives population dynamics.
W(u) gives classical optimization theory. W(u, N ) gives density-dependent selection,
which is known to evolve to the value of u that maximizes the equilibrium value of
N (Roughgarden 1979). In contrast, W(u, U ) gives frequency dependence without
density dependence, a common simplification within game theory. Thus, the u/U pair
(frequency dependence) is the sine qua non of continuous-trait game theory, giving a
twist not found in any earlier approaches. At the cost of losing the strongly mechanis-
tic Mendelian foundations of population genetics, we gain the ability to realistically
solve evolutionary models with complex ecologies.

A key innovation of evolutionary game theory involves extending the classical
notion of facing a single opponent playing strategy U to facing a population playing
strategy U. In Maynard Smith’s (1982, p. 23) idea of “playing the field,” the individual
does not interact in a pair-wise fashion with other individuals; rather the individual
faces an opponent that is the population at large. For example, the consequences
of flowering date to an individual may be influenced by the interaction between its
flowering date (u) and the flowering dates of all of the neighboring plants. In this
case we can think of the entire population playing the single strategy U. Under this
interpretation we see u as the strategy of a mutant individual or a focal individual,
and U is the resident strategy or the strategy found among the N individuals of
the population (or N–1 with 1 for the mutant). Even if individuals in the resident
population show variation, the playing-the-field approach can still work if the fitness
of the target individual is well approximated by considering the average strategy of
the resident population, Ū, that is, W(u, Ū, N ) ≈ W(u, {U1, U2, . . . }, N). Later
we explore extensions where the population has variation in strategy values among
individuals that cannot be reduced to the average strategy value.

Not surprisingly, an evolutionary game specified by W(u, U, N ) invites three
distinct dynamics: the fate of the mutant playing u, changes in the population-wide
strategy U, and changes in population size N. We discuss the first dynamic in the next
section and the second and third dynamics in the following section.
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Evolutionary Stability: Resistance to Invasion

Maynard Smith & Price (1973) considered the fate of a rare mutant or invader (playing
strategy u) playing against some resident population (playing U ). For evolutionary
stability, they suggest “a strategy such that, if most of the members of a population
adopt it, there is no ‘mutant’ strategy that would give higher reproductive fitness.”
(p. 15) Mathematically, the condition is

W(u, U ∗) < W(U ∗, U ∗). 2.

This means that U ∗ is resistant to invasion by any rare alternative strategy u or in
population dynamic terms the population size of the mutant or invader population
will decrease owing to lower relative fitness. Mathematically, Equation 2 is equivalent
to saying fitness with respect to u takes on a maximum at u = U ∗ when everyone else
is also playing U ∗ (See Figure 2)—U ∗ is the best response to itself.

Maynard Smith & Price call the strategy U ∗ an ESS. As recognition grew that
the equilibrium identified in Equation 2 is the outcome of only one of three dy-
namics involved in a game (specifically the fate of a mutant playing u), various re-
searchers gave it more specialized names such as evolutionarily unbeatable strategy
(Eshel 1983), δ-stability (Taylor 1989), internal stability (Lessard 1990), evolution-
ary stability (Christiansen 1991), ESS maximum (Abrams et al. 1993b), and the ESS
maximum principle (Vincent & Brown 1988, 2005). Regardless of terminology, it
recognizes the same property, namely that an individual cannot increase its fitness by
unilaterally changing its strategy.

We need to be careful about two points. First, if W is also a function of N, then
we must (a) determine the equilibrium population size N ∗ corresponding to U ∗,
(b) replace Equation 2 with W(u, U ∗, N ∗) < W(U ∗, U ∗, N ∗), and (c) require that
W(U ∗, U ∗, N ∗) = 0 (that is, no population growth if the resident population is of
size N ∗ and playing U ∗). Second, the ESS usually allows W(u, U ∗) = W(U ∗, U ∗)
so long as the further condition W(u, u) < W(U ∗, U ∗) holds, because this will still
prevent the rare mutant population from growing (Maynard Smith 1982). This second
condition can be relevant for matrix games, but it rarely applies to continuous games.

Not only does Equation 2 give a test for an ESS, but, if we remember calculus,
it gives a means to find ESS strategies. Specifically an ESS occurs at maxima of the
function W for the variable u, which can be found by requiring

∂

∂u
W (u, U ∗) = 0 3.

and
∂2

∂u2
W (u, U ∗) < 0 4.

when evaluated at u = U = U ∗ (and N = N ∗ if population dynamics are included).
The Supplemental Appendix applies Equations 2–4 to an example of a population
choosing between two food patches.

Resistance to invasion is a static concept. It guarantees that a population at (U ∗,
N ∗) can maintain its position against a rare invader, but it says nothing about what
would happen if the population starts at (or was perturbed to) a nearby point U ∗ + δ.
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Figure 2
Population moving across adaptive landscape. This figure shows a sequence of snapshots
(from t = 1 to t = 16 with 4 stops in between) of a population evolving in a continuous-trait
game model of the Levene model of competiton (Geritz 1998, Levene 1953) (also used in
Figures 3 and 4). The vertical axis is for fitness, W. The horizontal axis is for the strategy,
u/U. The solid line gives the adaptive landscape with the fitness for a mutant of strategy u at
each time t when the population is at Ut given by the location of the asterisk. These figures
were calculated using the discrete equation for the dynamics of U, that is, Equation 5. Note
the following points: (a) the population moves up hill, (b) the speed of movement is faster up
steep slopes and much slower on nearly flat slopes, (c) the shape of the adaptive landscape
changes as the population moves (U changes), (d ) this dynamic results in stopping at the top
of the hill, (e) this stopping point is an equilibrium point which meets the requirements of
Equations 3 and 4 [the slope is zero at the evolutionarily stable strategy (ESS), and the
second derivative is negative implying a maximum] and is therefore an ESS.

In fact, it is possible that W(U ∗, U ∗ + δ) < W(U ∗ + δ, U ∗ + δ) (that is, a point U ∗ that is
resistant to invasion is itself incapable of invading a population with a resident strategy
close to but different than U ∗; Geritz et al. 2002). Therefore invasion resistance by
itself is a poor predictor of the evolutionary dynamics of a whole population. An
additional concept is needed known as convergence stability, which we discuss in the
next section.
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Evolutionary Stability: Adaptive Dynamics and Convergence Stability

To model the evolution of the resident population phenotype U, continuous-trait
game theory extends Fisher’s (1930) Fundamental Theorem of Natural Selection, which
states that single locus genetic models evolve (change allele frequencies) according to
�p = k dw/dp where p is allele frequency. Visually, the change in gene frequency is in
the direction of and proportional to the slope of the adaptive landscape. By extension
of the Fundamental Theorem of Natural Selection to evolutionary strategies, the rate
of change in the value of a population’s strategy, U, is proportional to the slope of the
adaptive landscape (∂W/∂u) and in the direction of this fitness gradient (Roughgarden
1983). This leads to a dynamical equation for the change in the resident strategy, U:

�U = k
∂

∂u
W (u, U, N ) or Ut+1 = Ut + k

∂

∂u
W (ut, Ut, Nt). 5.

The constant of proportionality k, is sometimes broken into components involving
heritability h2 and/or additive genetic variance σ2. If this evolutionary “speed” term is
too large, then evolutionary dynamics may become nonequilibrial (particularly for the
difference equation dynamic). Equation 5 is sometimes called the canonical equation
of adaptive dynamics (Dieckmann & Law 1996). A continuous version is given by

dU
dt

= k
∂

∂u
W (u, U, N ). 6.

Equations 5 and 6 give the second dynamic inherent in W(u, U, N ) (changes in U ).
The third dynamic concerns population size, N. By definition of W (Equation 1),

d N
dt

= NW(u, U, N ) or in discrete terms Nt+1 = Nt + Nt W (ut, Ut, Nt). 7.

Together Equations 5 and 6, and 7 describe the dynamics of the state variables U
and N. For continuous-trait evolutionary game theory, these equations were first
suggested without proof by Brown & Vincent (1987a). The 1990s saw rigorous and
formal derivations of these equations (Abrams et al. 1993b, Geritz 1998, Metz et al.
1996, Vincent et al. 1993) with perhaps the most detailed being given by Dieckmann &
Law (1996). Many different flavors of Equations 5 and 6 exist with different notations,
definitions of k, and initial assumptions. Fortunately, these evolutionary dynamics are
remarkably robust to the slight differences in interpretation.

At least three other approaches to phenotypic evolution have been taken. First,
computer simulations of mutating asexual populations can be used when analytical
solutions are unavailable (see Figure 4). Second, several researchers have shown that
learning behavior can lead to strategy dynamics similar to Equation 5. Finally, re-
searchers have explored evolution toward an ESS using population or quantitative
genetics models. Although focusing on the purely phenotypic approach to the dy-
namics, we discuss these three alternative dynamics in the Supplemental Appendix.

It is straightforward to use the dynamical Equations 5 and 6 to identify the conver-
gent stable endpoints of the dynamic (Abrams et al. 1993b, Bulmer 1994, Geritz et al.
1998, Vincent 1990, Vincent et al. 1993). Specifically U ∗ is an evolutionary endpoint
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if Equation 3 holds and if:

∂2

∂u2
W (u, U ) + ∂2

∂u∂U
W (u, U ) < 0. 8.

Or more generally if the dependence of fitness, W, on N is modeled, then a third
term is added to the left hand side: +(∂2W/∂u∂N )(∂N ∗/∂U ) with W(u, U∗, N∗) =
0 (Vincent & Brown 2005). The proliferation of terms referring to the stability of the
adaptive dynamic include: continuous evolutionary stability, m-stability, ESS (coopt-
ing the earlier meaning) and convergence stability. We will refer to strategies U ∗

that meet Equation 8 as convergent stable. When U ∗ is convergent stable it is an
evolutionary attractor; populations with U different from U ∗ will evolve toward U ∗.
If the opposite of Equation 8 holds (LHS > 0) for a point U ∗ where Equation 3
holds, then it is an evolutionary repellor; populations just slightly off this point will
move further away from it. The Supplemental Appendix provides a worked example
of these equations.

The conditions for convergence stability and for resistance to invasion have some
important similarities. The first-order conditions of ∂W/∂u = 0 are identical. The
second-order condition for convergence stability contains one or two additional terms
beyond ∂2W/∂u2. The evaluation of resistance to invasion only involves unilateral
changes in an individual’s strategy with no changes in the population’s strategy or
population size. Convergence stability additionally involves the consequences of col-
lective changes in strategy (∂2W/∂u∂U ) and the effect of the populations strategy
on population size, (∂2W/∂u∂N )(∂N ∗/∂U ). The term ∂2W/∂u∂U = ∂(∂W/∂u)/∂U
is critical. It captures the idea that the shape of the adaptive landscape (∂W/∂u)
changes as U changes (see Figure 2). This is the famous idea of the adaptive land-
scape as a rubber sheet that gets stretched as a population moves across it. Wright
(1930) was well aware of this effect of frequency dependence and generally avoided
it. Continuous-trait game theory, on the contrary, embraces this addition. But it can
have profound implications, making evolution short-sighted (Roughgarden 1979)—
that is, meaning it evolves in the direction that currently causes the greatest increase
of fitness, not necessarily in the direction that will bring it to the highest collective
fitness.

Because of the possibility of ∂2W/∂u∂U being positive or negative, ∂2W/∂u2 can
be negative yet Equation 8 can fail, or ∂2W/∂u2 can be positive yet Equation 8 can be
true. Thus the two types of evolutionary stability (invasion resistance and convergence
stability) do not imply each other.

BESTIARY OF EVOLUTIONARY GAME OUTCOMES

As a consequences of the independence of the two types of stability there are four
possible outcomes when evaluating a strategy U ∗ that satisfies ∂W/∂u = 0. The
strategy U ∗ may exhibit any one of the following outcomes: (a) resistant to invasion
and convergent stable, (b) resistant to invasion and not convergent stable, (c) invadable
and convergent stable, and (d ) invadable and not convergent stable (Cohen et al. 1999,
Geritz et al. 1998). This creates an exciting bestiary of outcomes.
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Understanding the independence of invasion resistance and convergence stability
and the resulting four combinations has been the most important advance since the
initial formulation of evolutionary games. However, as one can imagine given the
half dozen terms for each of two types of stability, there has also been a proliferation
of terms for the four outcomes.

We have already given proposed unifying terms for the two types of stability (in-
vasion resistant = meets Equation 2, and convergence stable = meets Equation 8).
The four permutations of these two terms suffice to describe all evolutionary out-
comes in their full generality. However, we also propose that the four outcomes can be
meaningfully further classified into three groups, only two of which are biologically
interesting:

ESS: We suggest defining outcome A as the ESS. This means the ESS is an un-
invadable fitness maximum and convergent stable. Although Maynard Smith’s
original definition lacked an appreciation for convergence stability, he fully
intended the concept to describe the likely outcome of evolution by natural
selection acting on games. We favor updating Maynard Smith’s concept for two
reasons. First, the term ESS has the greatest cachet in the dictionary of evolu-
tionary ecology—why lose that? Second, fitness maxima that are evolutionary
repellors (not convergent stable) will not evolve. Applying the ESS to outcome
A follows Maynard Smith’s original definition with the necessary addition of
convergence stability (which was generally true at a fitness maximum in the dis-
crete games he studiedsee a detailed discussion in the Supplemental Appendix
for matrix games).
Branching Point: The term branching point describes outcome C where a
strategy is both a fitness minimum and convergent stable. As noted by Brown
& Pavlovic (1992) and then extensively developed by Abrams et al. 1993b,
Dieckmann & Doebeli 1999, Doebeli & Dieckmann 2000, and Geritz et al.
1997, populations may evolve to these branching points (Figures 3 and 4) and
then under the right conditions diverge into two separate populations or species
with distinct strategies—our topic for the next section.
Repelling points: Outcomes B and D are not convergent stable. Evolution will
not move strategies to these repelling points. These points should not be ob-
served in nature. It remains an open question on how these repellors may affect
evolution toward ESS and branching points (Doebeli et al. 2004). For example,
repelling points may serve to divide basins of attraction between alternate ESSs.
Or, like branching points, the existence of repelling points may presage an
ESS that contains more than one strategy (see the section entitled “Coalitions
and Evolutionary Stable Strategies with Multiple Strategies Played”).

An ESS (convergent stable maximum) can be global or local in each of the two
types of evolutionary stability. For invasion stability, an ESS can resist only nearby
invaders (a local ESS) or all invaders (a global ESS) (Vincent & Brown 2005 prefer
to further restrict the usage of ESS to global maxima). Even a global ESS may not
be the sole ESS on the landscape—there may be other strategies that are ESSs but
they are masked as soon as one of the ESSs is achieved. For convergence stability,
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Figure 3
Evolution toward minimum fitness. This is the same model of competition used in Figure 2,
but the parameter for niche width has been decreased to allow two distinct fitness peaks to
emerge. This example shows how evolutionarily stable strategy (ESS) dynamics can in fact
cause a population to evolve toward a fitness minimum. This depends critically on the fact that
the landscape changes shape as the population evolves. The basic effect is that the landscape
changes shape faster than the population moves. Just before time t = 15 the population was
split into two subpopulations starting just slightly to either side of the fitness minimum. With
two populations, the populations are now able to evolve apart toward the two fitness maxima
(ESSs). This is an example of a branching point. This is also an example where a coalition of
two is able to invade an equilibrium that is uninvadable by any coalition of one.

all possible starting strategies can converge to the ESS (globally convergent) or only
some subset of initial strategies (called the basin of attraction) will evolve to the ESS
(locally convergent). A globally convergent landscape can have only one ESS whereas
systems with multiple ESSs (necessarily only locally convergent) will have a distinct
basin of attraction associated with each ESS.

With these local and global properties applied to each outcome of invadability and
convergence stability, the bestiary of possibilities grows! For instance, the ESS may
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Figure 4
Individual-based models and branching points. This figure is an example of using a computer
simulation of an individual-based model (IBM) of a population reproducing asexually with
occasional mutation (see Supplemental Appendix). In this simulation the same game as in
Figure 3 is modeled. The result is very similar—the population evolves to the branching point
at U = 0, then splits into two populations (a coalition) moving to the two peaks near +2 and
–2. The main difference is that the population already had a spread of phenotypes and did not
require the specific intervention of adding a second population at the branching point. There
is considerable debate about whether this branching will occur when the organism reproduces
sexually.

be globally convergent stable but not a global maximum. Once this ESS has evolved,
a distant strategy can invade. But once this distant strategy starts to become common
it either (a) moves toward U ∗ and merges back into U ∗ or (b) goes extinct. This is
known as the resident strikes back scenario (Dieckmann et al. 1999). This outcome
requires weird mathematical conditions and it may or may not be biologically likely
(Geritz et al. 2002).

This brings us to the current frontier of evolutionary game theory where strategy
dynamics lead to a dizzying array of outcomes. When population dynamics are over-
laid on the strategy dynamics, the possibilities become Byzantine. Geritz et al. (1999)
point out that this diversity of outcomes occurs because of interactions between the
two stability properties of resistance to invasion and convergence stability. A single
model (Geritz et al. 1999) exhibited at least five different types of bifurcations, as
follows:

1. Global ESS becomes local ESS with no other equilibria appearing,

2. Repellor and branching point appear simultaneously (with branching point
adding a strategy or causing extinction),

3. ESS and repellor collide and annihilate each other,
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4. Global ESS becomes local ESS simultaneously with appearance of branching
point and repellor, and

5. Branching point leads to a coalition of two strategies, one of whose equilibria
is a continuation of the local ESS.

The exploration of bifurcations in adaptive dynamic systems remains perhaps the
most important theoretical topic left to pursue in continuous-trait game theory.

ADAPTIVE SPECIATION AND BRANCHING POINTS

Branching points are evolutionary attractors that are fitness minima (that is, Equation
2 is false but Equation 8 is true). In some models, the evolution of the resident
population strategy U can evolve uphill along the adaptive landscape yet come to rest
at a minimum. This occurs because the adaptive landscape changes even as the strategy
moves along it (see Figure 3 for an example of this counterintuitive dynamic). When
the population is at strategy U ∗ – δ (δ > 0 here) the, landscape takes on a positive slope.
At U ∗ + δ the landscape takes on a negative slope; but when the population plays
exactly U ∗, the signs reverse leaving U ∗ at a minimum. Even if the system starts with
two evolving species with strategies that are close together but distinct, the process
of branching occurs. At first, the two evolving populations may climb the same slope
toward what would be the branch point, but as the strategies approach the minimum,
the position of the minimum itself moves to a point between the species. The species
do not need to cross the valley of the landscape, rather the valley crosses under
them.

Multiple fates of these two separately evolving populations can be imagined:

1. Both populations continue to evolve and move toward something like an ESS,
they remain two populations with distinct strategies—the ESS may contain
more than one distinct strategy.

2. One or both populations diverge to strategies that are themselves branching
points, permitting the process of strategy diversification to continue as an adap-
tive radiation.

3. One population evolves toward its own extinction whereas the other moves
away from the branching point toward an ESS.

4. Both populations become extinct.

Outcomes 1 and 2 raise two questions: Can we describe these branching, separately
evolving populations as species? And how do we define an ESS with two resident
strategies instead of one?

Outcome 3 might seem counterintuitive: How can a population evolve in the di-
rection of increasing fitness until it goes extinct? In fact, several biologically realistic
examples of this have been identified (Geritz et al. 1999, 2002). Runaway selection
provides one example where some trait of the population becomes ever more ex-
treme owing to evolutionary forces, but the equilibrium population size for the more
extreme trait becomes progressively smaller until extinction occurs. Thus we need
an adjective to describe different types of branching points. We propose calling out-
comes 1 and 2 (two or more permanently evolving populations) coalition branching
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points for reasons that are made clear two sections below. We propose calling outcome
3 extinction branching points. Ferrière and coworkers called outcome 4 evolution-
ary suicide (Ferrière 2000), although this may require mathematically precise and
biologically unrealistic conditions (Geritz et al. 2002).

Speciation: Do Branching Points Really Branch?

The identification of branching points may lead to major advances in the studies of
sympatric speciation and adaptive radiations. That these convergent stable minima
are a real phenomenon of game theory is demonstrable fact. What they mean in
nature is an open and exciting empirical question. Are there species in nature with
strategies that reside at one of these minima? There has been debate for (Cohen et al.
1999, 2001) and against (Abrams 2001, Waxman & Gavrilets 2005) the relevance of
branching points to natural systems.

Early models and tests of sympatric speciation (Maynard Smith 1966, Thoday &
Gibson 1962) used disruptive selection as the driving mechanism of speciation. As
shown in most evolution textbooks, this disruptive selection explicitly or implicitly
assumes that the resident phenotype of the population is at a minimum of the adaptive
landscape. But how did the population’s phenotype get to this point of disruptive
selection in the first place?

Evolutionary game theory and the phenomenon of branching points (convergent
stable minima) resolve these problems with nongame theoretic models of sympatric
speciation. Natural selection evolving up the fitness gradient can itself arrive at the
minimum of frequency-dependent adaptive landscapes. When the number of resident
strategies is below that of the ESS (see the next section below on Coalitions and
Evolutionary Stable Strategies with Multiple Strategies Played), natural selection
may drive the strategy to the branching point, exert disruptive selection, and permit
speciation. Rosenzweig (1978) anticipated some of these properties of frequency- and
density-dependent adaptive landscapes in what he called competitive speciation.

Current modeling and conceptual research addresses the question of how branch-
ing points can permit speciation. With asexually reproducing organisms branching
occurs easily (Figure 4 and Geritz & Kisdi 2000). But sexual reproduction creates a
blending or interbreeding between separating populations that may preclude split-
ting the population into subpopulations with distinct resident strategies (Tregenza &
Butlin 1999). This fact is captured in the discontinuous jump that was required be-
tween time steps 13 and 15 in Figure 3—the researcher who conducted the computer
simulations had to arbitrarily introduce two populations as the progenitor population
approached the branching point.

Several mechanisms may allow speciation even under sexual reproduction. First,
species may assortatively mate on the trait that is subject to disruptive selection.
This is conceivable, for example, for body size. In fact, if the species persists at
a branching point, selection strongly favors assortative mating! Second, a marker
trait or sexually selected trait such as throat color may become linked to the trait
under disruptive selection and allow assortative mating on the marker trait. The
assortative mating becomes adaptive because of the lesser fitness of intermediate
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types (Dieckmann & Doebeli 1999, Doebeli & Dieckmann 2000, Geritz & Kisdi
2000, Kisdi & Geritz 1999). Third, and perhaps most likely, these traits may cause
organisms to be more commonly found at sites (host plants, elevations, microhabitat)
to which they are most adapted (either through active choice by the organism or
by Darwinian selection), and the spatial separation correlated with the trait leads
to assortative mating as a byproduct of proximity (Doebeli & Dieckmann 2003).
It is important to note that these four modes of speciation (asexual and the three
assortative mating mechanisms) not only are not unique to adaptive dynamics but
were developed first and most extensively elsewhere (Kondrashov 1986, Kondrashov
& Kondrashov 1999, Rosenzweig 1978).

The novel and wonderful contribution of adaptive dynamics to sympatric speci-
ation is in showing how the disruptive selection comes about. Prior to game theory,
disruptive selection was often considered somewhat pathological or a chance event.
But with the inclusion of density and frequency dependence into standard models
of population dynamics, we see disruptive selection occurring easily in the form of
branching points. These branching points emerge as a very common and widespread
property of continuous-trait games.

Coalitions and Evolutionary Stable Strategies with Multiple
Strategies PlayedEvolutionarily Stable Strategies

In matrix game theory it was recognized that a single strategy may not be an ESS.
For instance, in a Hawk-Dove game, the strategy Dove may have a higher payoff
than Hawk in an all-Hawk world and vice-versa for Hawk having a higher payoff in
an all-Dove world. Consequently, the two strategies coexist. Just like matrix games,
the ESS for continuous-trait evolutionary games may possess a coalition of coexisting
strategies. The existence of branching points in models suggests that the model may
have an ESS coalition with two or more strategies.

The ESS concept extends nicely to cover ESS coalitions of n populations, playing
strategies U1, U2, . . . Un. The extension of notation is straight forward:

(1/Ni )(dNi/dt) = W(u, U1, U2, . . . , Un, N1, N2, . . . N3) = W(u, U, N ) for u = Ui

9.
where the boldfaced U and N represent vectors of the resident strategies and their
population sizes for i = 1, . . . , n. Brown & Vincent first developed the idea of an ESS
coalition of more than one strategy, referring to Equation 9 as the fitness generating
function (using G instead of W ). Although not explicit, they considered the ESS
(given Equations 10 and 11 below) to be both resistant to invasion and convergent
stable (Brown & Vincent 1987b; Vincent & Brown 1984, 1988; Vincent et al. 1996).
With the discovery of branching points, the ESS coalition has become an important
and necessary extension. and others have readily adopted it (Geritz et al. 1998, 1999).
By setting u = Ui in the function, one generates the fitness function for the population
using strategy i.

The necessary conditions for U∗ to be resistant to invasion represent a straight-
forward extension of Equations 2 and 3 (Brown & Vincent 1987b; Vincent & Brown
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1984, 1988; Vincent et al. 1996):

∂

∂u
W (u, U1, U2, . . . , Un, N1, . . . , Nn) = 0 foru = Ui for each i 10.

and

∂2

∂u2
W(u, U1, U2, . . . , Un, N1, . . . , Nn) < 0 for u = Ui for each i, 11.

where each population of the coalition must exist at positive population size: N ∗
i >

0. Resistance to invasion requires that each strategy of the ESS reside on a separate
peak of the adaptive landscape and that each of these peaks have the same fitness,
which is zero at N∗: W(u, U∗, N∗) ≤ W(Ui, U, N) = 0 for all i = 1, . . . n. Changes
in Nis balance the adaptive landscape so that all strategies of the coalition reside on
peaks of equal fitness.

The concept of convergence stability also remains the same for a coalition with
just one strategy. The necessary first order condition remains the same as Equation 3,
but the second order conditions analogous to Equation 8 become onerous and quite
intractable above a coalition of three or more strategies (Cohen et al. 1999, Geritz
et al. 1998). But the idea continues to be that U∗ is convergent stable if strategy
dynamics will return the populations’ strategies to U∗ following a perturbation of
δi to one or allof the strategies of the coalition (where Ui = U ∗

i + δi refers to a
perturbation of strategy i). Graphical methods using invasion cones for analyzing
2-coalitions often work better (Geritz et al. 1998, Matessi & Di Pasquale 1996),
and other times simply verifying the uninvadability of an n-coalition is adequate
(for example, Brown 1990a). Generally the convergence stability of a candidate U∗

is evaluated using adaptive dynamics to see what happens to coalitions with starting
conditions close to U∗. Additional work is continuing in this area. There are currently
no general results indicating when a model or circumstance will yield an ESS with
specifically n-strategies.

Recently, Cohen (2003) has introduced a new approach that is analytically more
difficult but biologically more realistic than the idea of a coalition. Rather than a
point or set of points along the strategy continuum, Cohen models the evolution of
a probability distribution on the strategy continuum. Thus, the resident population
could play strategies that are, for example, normally distributed along the continuum.
When the mutant “plays the field,” the field is then this probability distribution. This
has much in common with the use of quantitative genetics to model phenotypic
evolution (Abrams et al. 1993a). Although an ongoing and exciting development, the
approach remains rather intractable.

EXPANDING THE DOMAIN OF EVOLUTIONARY
GAME THEORY

Thus far, we have developed the machinery for predicting phenotypic evolution of a
single trait for deterministic systems with stable and fast population dynamics. Can
this machinery be expanded to cover more complicated situations? We explore some
of these extensions.
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Density Dependence and Nonequilibrium Population Dynamics

So far we have largely ignored the dynamics of population size, N. The justification for
doing this is a fast/slow argument—evolution proceeds slowly relative to population
dynamics. Hence, once can assume that strategy dynamics occur mostly when the
populations are at or near N∗.

Of course, this may not always hold. First, strategy dynamics may be fast (for
example, selection strong enough) and with a comparable time scale to population
dynamics (Yoshida et al. 2003). Second, population dynamics may exhibit oscillations
or even chaos. Both may happen for traits associated with predator-prey interactions.
Predator/prey models frequently show cyclical dynamics, and the evolution of preda-
tion traits may also cycle as the evolutionary responses oscillate with the population
dynamics (Abrams & Matsuda 1997, Dieckmann et al. 1995).

When evolution is almost as fast as population dynamics, or if the population dy-
namics do not have a stable point equilibrium, then we have two modeling choices.
We can simulate the system using Equations 5 and 7, or we can use an analyti-
cal solution. The analytical solution looks at long-term fitness using the idea of a
Lyapunov exponent (Caswell 2001, p. 542 and 561; Ferrière & Gatto 1995, Rand
et al. 1994). A Lyapunov exponent can be thought of as the log geometric mean of
fitness.

Wlongterm(u, U, N ) = [log |W (u, U1, N1)W (u, U2, N2) . . . W (u, UT, NT)|]1/T

= 1/T �i log |W (u, Ui , Ni )| 12.

So if the population dynamics follow a five-cycle, then we geometrically average the
fitness of the invading phenotype u, across the five different population sizes Ni in
the cycle and the corresponding population strategies Ui. The geometric average is
used because population growth is multiplicative (NT = WT . . . W2W1N0), whereas
the log is mathematically convenient. If chaotic rather than cyclic dynamics occur,
then we must take the limit as T → ∞ . When using Lyapunov exponents, modelers
generally favor using a discrete population dynamic based on Nt+1 = NtW(u, Ut,
Nt), where equilibrium occurs when W = 1.

With Lyapunov exponents we say that if Wlongterm(U, U ) > Wlongterm(u, U ) for all
(nearby) u (that is, U is a global or local maximum in Wlongterm), then U is an ESS
under nonequilibrium dynamics. Although a logical extension of the idea that an
ESS is a fitness maximum, it is now only true in the long-term. It is possible for an
invading mutant to have negative fitness in one half of a population cycle, positive
fitness in the other half, but overall a positive Lyapunov exponent. If the mutant
begins its invasion in the half of the cycle where fitness is negative, then it will fail,
but in the long-term such a mutant should invade if repeated attempts occur. Thus,
we can achieve a strong analytic result (using Lyapunov exponents), but it holds true
only in a long-term, averaged-across-many-replicates sense. Finally, the property
of convergence stability remains poorly understood for nonequilibrium populations
and/or fast evolutionary dynamics.
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Stochastic Environments

We have developed the ESS concept as a deterministic process, but the world expe-
rienced by organisms is inherently stochastic. Temperature, precipitation, and other
factors fluctuate randomly. Many interesting questions in evolutionary ecology derive
from such stochasticities (Cohen 1966, Roff 2002).

Stochasticity has the potential to change the evolutionary outcome when the model
has multiple ESSs by stochastically bouncing from one basin of evolutionary attraction
to another. We can define an uninvadable strategy in a stochastic environment result
by using mathematics similar to that for nonequilibrium population dynamics. We
denote environmental conditions (for example, temperature) here by a little e and
subscript it by t for time to suggest that this takes on varying values over time according
to the probability distribution E . We take the same concept of a Lyapunov exponent,
except here we average not over the sequence of population sizes, Nt, but over the
environmental states, giving:

Wstochastic(u, U, E ) = EE {log(u, U, E )} = 1/T �t log W (u, U, et), 13.

where EE denotes taking the expectation with respect to E . In practice this can be done
by taking a simple average over a number of samples from E . In more advanced models
it is important to know not just E , but the autocorrelation structure across time (for
example, do good years tend to follow good years) (Tuljapurkar 1990, Tuljapurkar &
Orzack 1980).

Equation 13 suggests that Wstochastic should parallel Wlongterm, and indeed similar
issues arise. We can make a weak statement using Wstochastic as an invasion exponent
(Metz et al. 1992, Rand et al. 1994) and determine which phenotypes can invade
against all other phenotypes. This identifies a coalition of phenotypes likely to be
present and is sometimes called an evolutionarily stable combination (ESC) (Cohen
& Levin 1991, Ellner & Hairston 1994, Ludwig & Levin 1991). This avoids making
a strong statement about the one phenotype to win. A stronger statement about a
local or global maximum of Wstochastic (a stochastic ESS) emerges by looking for a
fitness maximum in Wstochastic, but declaring a precise ESS strategy can be misleading
when the biological reality will likely involve a cloud of indistinguishable strategies
around this ESS. Furthermore, as before, the convergence stability of systems using
Lyapunov exponents for either fluctuating populations or environments remains an
unsolved problem.

Structured Populations

Thus far we have ignored age or stage structure. In reality populations are subdivided
by age, size, and spatial structure, and there may be evolutionary strategies associ-
ated with different stages or ages, or a given strategy may influence different stages
differently. Matrix models can examine the population dynamics of structured pop-
ulations (Caswell 2001). The ESS machinery applies to matrix models of population
dynamics. The dominant eigenvalue of the matrix determines the long-term behav-
ior of the population dynamics. As an evolutionary game, we simply equate fitness
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W(u, U, N ) to the dominant eigenvalue (Caswell 2001; Doebeli & Ruxton 1997;
Vincent & Brown 2001, 2005) W(u, U, N ) = λ(u, U, N ), and apply the standard
conditions for seeking resistance to invasion (maxima of W is an ESS, etc). The condi-
tions for convergence stability also remain the same with the caveat that one assumes
that a stable age or stage distribution is established quickly. Like the assumption of
fast population dynamics to a stable equilibrium, we now assume fast dynamics on
maintaining and adjusting the stable stage distribution.

Structured (matrix) populations in a stochastic or nonequilibrium environment can
also be studied through a combination of Lyapunov values and dominant eigenvalues.
Although conceptually straightforward, the modeling begins to invoke complicated
mathematical machinery (Caswell 2001; Doebeli & Ruxton 1997; Tuljapurkar 1990,
1997; Tuljapurkar & Orzack 1980). Furthermore, the actual time distribution of
population sizes may result from an interaction of resident strategies and stochasticity.
For such a case, one must use a simulation to produce a distribution of states and then
examine the best response to this distribution (Schmidt et al. 2000).

Multiple Traits

One often studies the evolution of two traits simultaneously. Equations 2–4 and 6–8
have exact analogues for the evolution of multiple traits, but the terms are now vectors
and matrices instead of scalars. For instance, a strategy, u or U, is now a vector where
each element represents one trait. Details are in Leimar (2005). Most importantly, the
scalar k from Equation 6 turns into a matrix. If the two traits are independent, then k
is diagonal, and it can be shown that the traits can be modeled separately. However it
is common for traits to covary owing to linkage, epistasis, or other covariances. For
example, life history traits such as age at maturity, body size, fecundity, and lifespan
all have well-known positive and negative correlations (Roff 2002).

When traits do covary, k is no longer diagonal. Strategy dynamics now occur on
a two-dimensional landscape with each trait forming one axis, and maxima look like
hills. In a two-dimensional landscape, the strategy vector has many possible directions
for moving uphill. The exact path up the landscape is determined by the sequence of
mutations, which are in turn constrained by the covariance of the traits (Dieckmann
& Law 1996, Leimar 2005, Matessi & Jayakar 1976). This outcome is already known
in quantitative genetics (Lande 1979). In unusual circumstances, such as when there
are two close peaks with a saddle (pass) between them, the indirect route of adaptive
dynamics can cause evolution to leave the basin of attraction of one peak and evolve
to the other peak (Leimar 2005, Matessi & Jayakar 1976). Leimar (2001) refers to
this change in evolutionary outcome resulting from the sequence of mutations as a
Darwinian demon, but in practice the conditions in which this can happen may be
quite unlikely (Leimar 2005). A promising new approach to the evolution of multiple
traits extends Levins’ visual fitness set diagrams (Levins 1968) to the frequency-
dependent scenario (de Mazancourt & Dieckmann 2004).

Regardless of whether the two traits covary, evolving in two-space offers a new
feature. Instead of just having attractors and repellors, equilibrium points can now
be saddle points, attracting in some directions in trait space and repelling in others.
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Although saddle points are unstable as an evolutionary endpoint, evolution can spend
large amounts of time flying by the saddle points, giving them a strong structuring
role in the dynamics (Cushing et al. 2002).

Under vector-valued strategies the ESS concept likely remains unchanged. Evo-
lutionary branching points can still occur and behave as sources of speciation. But,
now we have the opportunity for the vector of traits to become coadapted within the
organism. In this way, many of the covariances seen across species in certain traits
(bill length and bill depth in many birds) may be the result of coadaptation and not
genetic constraints.

Multiple Species and Coevolution

Continuous-trait game theory provides an excellent tool to model the coevolution of
species. In fact, coevolution is really just a special case of the multitrait case described
above where the traits are independent of each other (that is, the covariance matrix,
k, is diagonal) because they are different species.

For example, for a two-species system with one trait coevolving in each species
we have:

W1(u, U, V, N, M ) and W2(v, U, V, N, M ), 14.

where the fitness function is subscripted by species and may take quite different forms
in an asymmetric coevolution model such as predator/prey. As always, we explore the
fitness of a mutant of species 1 playing the strategy u against a population of species
1 playing the strategy U and the population of species 2 playing the strategy V.
Population sizes of N and M refer to species 1 and species 2, respectively. (Note that
any rare mutants in species 2 playing strategy v are assumed to have no effect on a rare
mutant of species 1 playing strategy u.) Likewise we explore the fitness of a mutant
in species 2 playing strategy v against the same context.

The model can easily be extended to more than two species. For example, W1(ui,
U, V, N, M), where U and N are vectors, gives the strategies and population sizes
for different prey species, while W2(v, U, V, N, M) may be the predator’s fitness
function, where elements of V and M represent different predator species. Note that
all predators share the same basic fitness function, W2, but there is one equation for
each ui and vi (an invading mutant for each species). This is sometimes referred to as
a fitness generating function (Brown & Vincent 1992).

Evolution is now occurring along several adaptive landscapes, one for each species.
The strategies and population sizes of all species may influence the shape of each
species’ adaptive landscape. The conditions for resistance to invasion remain un-
changed, U∗ and V∗ must simultaneously take on maxima of their respective land-
scapes and, at equilibrium populations sizes, these maxima will yield 0 fitness. The
concept of convergence stability remains the same but the conditions are quite un-
wieldy and have yet to be fully described with more than two species. The ESSs can
still be defined as coalitions of strategies that are convergent stable and resistant to
invasion but can now involve multiple species of prey and predators. The prey and/or
predator’s adaptive dynamics may lead to evolutionary branching, nonequilibrial
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evolutionary dynamics, and local maxima (Dieckmann et al. 1995). Such a model
allows for coevolution both within and between the predator and prey species.

APPLICATIONS OF CONTINUOUS-TRAIT GAME THEORY

It is impossible to summarize in a single review article all biological problems that
have been studied using continuous-trait games (see Figure 1). Here is a very brief
summary. Broadly speaking, biological applications of continuous-trait game theory
fall into two categories, models of evolution of a single species (evolutionary ecology)
and models of evolution between two species (coevolution).

Evolutionary Ecology

In 1983 three nearly simultaneous papers (Bulmer 1983, Iwasa et al. 1983, Parker
& Courntey 1983) used ESS models to explain the well-known phenomenon of
protandry in insects (males emerge before the females). These models suggested not
only that early emergence should occur but that there should be an abrupt drop-off in
male emergence before the end of female emergence. Additional predictions include:
environmental stochasticity should lead to increased variation in emergence time un-
der all conditions and tracking of the female emergence times if this is predictable
(Iwasa & Haccou 1994); a variety of modifications occur in divoltine populations
(Wiklund et al. 1992); arrival order of migratory birds should depend on individ-
ual condition (Kokko 1999); and if disturbances (for example, late freezes) influence
emergence times, then optimal emergence strategies depend on the spatial scales of
disturbance and population regulation (Iwasa & Levin 1995).

Cohen (1966) studied dormancy in annual plants (seed banks) without density de-
pendence and showed that dormancy (partial germination) was optimal in a stochas-
tically varying environment. Seger & Brockman (1987) pointed out that this same
line of thinking applies to diapausing insects and named this argument bet-hedging.
In the mid-1980s several researchers (Bulmer 1984; Ellner 1985a,b; Goodman 1984)
nearly simultaneously applied game theory to identify ESS solutions showing that
the inclusion of density and frequency dependence caused an increase in the optimal
dormancy fraction. Tuljapurkar & Istock (1993) studied the effect of environmental
harshness and temporal weather autocorrelations on diapausing. Simultaneous tem-
poral stochasticity and deterministic spatial heterogeneity (with limited dispersal)
can lead to branching points with the coexistence of multiple germination strategies
(Mathias & Kisdi 2002).

At this writing (February 2007), over 95 papers have analyzed the evolution of
dispersal using a game theoretic approach. Game theory can explicitly allow for den-
sity and frequency dependence and/or environmental variation. Several researchers
(Comins et al. 1980, Motro 1982, 1983) suggested that dispersal would be an ESS to
avoid kin competition. Kin selection in ESS models is discussed generally, with an
example based on dispersal, by Taylor & Frank (1996). Levin et al. (1984) showed
that stochastic spatial heterogeneity could also make dispersal an ESS, a conclu-
sion expanded in several directions (Lemel et al. 1997, Mathias et al. 2001). Several
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researchers have explored how nonequilibrium population dynamics (for example,
chaotic) favor dispersal (Doebeli & Ruxton 1997, Gyllenberg & Metz 2001, Holt
& McPeek 1996, Parvinen 1999). A number of researchers also explore local (seed)
dispersal and possible trade-offs on seed size and/or competition (Ezoe 1998, Lavorel
et al. 1994, Levin & Muller-Landau 2000, Winkler & Fischer 1999). Dispersal in a
metapopulation (Gyllenberg et al. 2002) can evolve to the point where the species
drives itself extinct. Evolution of dispersal can lead to branching points and dimor-
phisms in dispersal strategies (Doebeli & Ruxton 1997, Mathias et al. 2001) or to
phenotypically plastic reaction norms (Ezoe & Iwasa 1997). The link between dis-
persal and various other life history strategies such as age of reproduction (Ronce et al.
2000) and brood size (Kisdi 2004) has been explored. Other analyses have identified
the ESS strategy for migration versus overwintering (Kaitala et al. 1993) and joining
or leaving social groups (Kokko & Johnstone 1999, Stephens et al. 2005).

The evolution of seed size versus seed number (or any offspring number versus
offspring quality trade-off ) is also amenable to ESS modeling. As with dormancy
and dispersal, optimization models make one prediction, but ESS models that in-
clude density dependence and/or environmental variation make different predictions.
Specifically, the Smith-Fretwell model (1974) predicts an intermediate seed size, but
empirical observations show considerable variation in seed size within a single par-
ent. Using game theory one can introduce a variety of factors that predict variation
in seed size within a single parent, including the introduction of a stochastic environ-
ment (Yoshimura & Clark 1991), the assumption of asymmetric competition favoring
larger seeds (Geritz 1995, Geritz et al. 1998), and the existence of size-selective preda-
tors (Geritz 1998). As already discussed, seed size is often correlated with dispersal
ability, resulting in several ESS analyses of the trade-off (Ezoe 1998, Levin & Muller-
Landau 2000). The evolution of optimal body size at maturity in animals is similarly
enhanced by the use of game theory to include density dependence and/or stochastic
environments (Lytle 2001). The existence of asymmetric competition also explains
allocation to inefficient support structures required to achieve large body sizes (for
example, woody growth in trees) and may explain the mixture of body sizes observed
within a community (Falster & Westoby 2003).

Venable & Brown (1988, 1993) presented a synthesis that ties the last three para-
graphs together. Seed size, dormancy, and dispersal are all strategies that reduce risk
from temporal variability in three factors: environmental stochasticity, crowding, and
sibling competition. They showed that a change in one trait leads to a change in the
optimum of the others, ultimately leading to the existence of trade-offs resulting from
bet-hedging.

Habitat choice and the evolution of specialists and generalists are also frequently
analyzed using game theory because choice of habitat clearly depends on what habi-
tats other individuals are choosing. Although Fretwell never mentioned game theory,
his concept of an ideal free distribution or IFD (Fretwell 1972, Fretwell & Lucas
1969) is a game, as shown by the worked example in the Supplemental Appendix.
Rosenzweig and Abramsky have done extensive theoretical and field work on habitat
choice (Abramsky et al. 1991, 1997; Rosenzweig 1981, 1987). Joel Brown has ex-
tended this work in an explicitly game theoretic context (1988, 1990b, 1992, 1999).
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Brew (1982) used game theory to extend this work from discrete patches to a spatial
continuum. It has also become clear that the game of habitat selection can lead to
the evolution of both generalists and specialists, and to the coexistence of multiple
species (Brown 1998, Kisdi 2002, Schmidt et al. 2000).

Coevolution

Game theory becomes a tool for modeling coevolution and the evolution of niches
once different strategies of an ESS coalition represent different species, and branch-
ing points provide opportunities for speciation. For modeling the coevolution of
competitors, Lotka-Volterra competition equations, consumer-resource dynamics,
and Levene hard selection and plant growth models have been used as the ecologi-
cal starting point for W (Apaloo et al. 2005, Brown & Vincent 1987a, Cohen et al.
1999, Cressman & Garay 2003, Flaxman & Reeve 2006, Geritz et al. 1998, Rees
& Westoby 1997, Vincent et al. 1996). As we have already seen (Figures 3 and 4),
competition can lead to branching points and coalitions with multiple species, in
some cases through repeated cycles of additional branching (that is, coexistence of
many species). But although branching points can be sufficient to achieve the ESS
community of n-species, the process in Lotka-Volterra models often proceeds nicely
to n–1 species, but then an insurmountable valley emerges separating an occupied
peak from an unoccupied peak of even higher fitness (Vincent & Brown 2005). Even
when the niche space is continuous, game theory models of competition generally
result in a finite number of distinct species with strategies spread out along the niche
axis (Mitchell 2000). This result parallels the idea of limiting similarity (MacArthur
1967), but the ESS generally supports fewer species with wider niches than possible
under strict nonevolutionary niche packing.

Models of predator-prey coevolution require at least two independent fitness func-
tions built around an ecological model for the prey and another for the predator
(Abrams & Matsuda 1997, Bowers et al. 2003, Brown & Vincent 1992, Dieckmann
et al. 1995). Any standard model of predator-prey population dynamics can be fash-
ioned into an evolutionary game where the prey have a strategy or vector of strategies
influencing resource acquisition, competition, and susceptibility to predation. The
predators possess a strategy that influences their ability to catch prey, which is simul-
taneously influenced by the prey’s strategy. These models reveal several important
outcomes. First, predator-prey coevolution frequently produces branching points that
enhance the number of prey and/or predator species in the ESS (Brown & Vincent
1992, Kisdi 2006). Second, a predator species may be evolutionarily keystone and
necessary for promoting the presence of additional prey species within the ESS (but
once the prey species has evolved, the predator species may not still be necessary for
prey coexistence). Third, sometimes when the number of predator species and prey
species is well below the numbers of the coalition ESS, the strategy dynamics will
result in perpetual cycling where the prey strategy evolves away from the predator
and the predator’s strategy chases after it. Or the system may self-annihilate as the
predator strategy chases the prey strategy to such extreme values that the prey evolves
to extinction.
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Coevolution of mutualisms offers a new frontier for evolutionary game theory
(De Mazancourt et al. 2005). Like other forms of species interaction, frequency de-
pendence can create ESS coalitions with many coexisting species (Bever 1999). But
a number of issues unique to mutualism are emerging. Mutualisms face a Prisoner’s
Dilemma-like game in which taking from the partner but not giving is the optimal
strategy. A variety of mechanisms have been identified that allow a mutualism to coe-
volve (McGill 2005). The coevolution of mutualisms can in turn affect the evolution
of other life history traits (like root:shoot ratio) (Geritz et al. 2006).

Despite the literally hundreds of papers already published (Figure 1), continuous-
trait game theory is only just beginning to tap into its potential impact on ecology,
evolution, coevolution, community assemblages, and the evolution of niches.

SUMMARY POINTS

1. Continuous-trait game theory is a modeling tool whose use is rapidly grow-
ing owing to its unique ability to address real-world questions in evolutionary
ecology that involve complex traits in a density- and frequency-dependent
context.

2. The key innovation of game theory relative to optimization theory is exam-
ining the fitness W(u, U ) of a rare mutant, u, playing against the field, U.
An evolutionarily stable strategy (ESS) is one that is its own best response;
at an ESS an individual maximizes its fitness by playing the same strategy as
the population, which makes an ESS resistant to invasion by rare alternative
strategies.

3. Adaptive dynamics extends the static nature of game theory by exploring the
dynamic processes that lead a population to evolve toward an ESS. Surpris-
ingly, evolution can lead to fitness minima as well as ESSs being evolutionary
repellors. Adaptive dynamics highlights the importance of convergence sta-
bility (being an evolutionary attractor).

4. We propose clarification of the convoluted terminology of game theory. We
suggest defining an ESS as a strategy or coalition of strategies that is a fitness
maximum (invasion-resistant) and convergent stable (evolutionarily attract-
ing). Branching points are fitness minima yet still evolutionary attractors
(convergent stable). Finally, evolutionary repellors are strategies that are
not convergent stable regardless of whether they are maxima or minima.

5. The notion of an ESS extends easily to (a) coalitions of coexisting pop-
ulations or species with distinct strategies, (b) nonequilibrium popula-
tion dynamics, (c) stochastic environments (d ) stage-structured populations
(e) multiple traits, and ( f ) coevolution of multiple species.

6. Continuous-trait game theory has been applied to a wide variety of questions
in evolutionary ecology, including evolution of phenology, germination, nu-
trient foraging in plants, predator-prey foraging, offspring size-number, dis-
persal, and coevolution.
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FUTURE ISSUES

1. Continuous-trait game theory needs to rise to the challenge of its critics
(Waxman & Gavrilets 2005) and produce strong predictions that can be
tested. We believe the best way to do this is through the development of
applied models rather than more theoretical development. This goal leads
immediately to the next three items below.

2. The mathematical development of game theory is important but must stop
reveling in small differences between theories and instead emphasize the
underlying unity of game theory as a language for natural selection. This
will make game theory more attractive and accessible to those simply in-
terested in evolution and not game theory in particular. Similarity of new
work to preexisting concepts should be highlighted. The proliferation of
terminology is excessive and has been detrimental to the field.

3. Collaborations between mathematical modelers and field ecologists are
needed to develop applications of continuous-trait game theory to biolog-
ically important questions. This requires models to be less heuristic and
more amenable to empirical test.

4. Models need to make stronger predictions. Many existing models produce
weak predictions. For example, a prediction that an intermediate germina-
tion fraction (that is, >0 and <1) is an ESS counts as a weak prediction.
Stronger predictions would include predictions that the germination frac-
tion will increase or decrease with increasing environmental noise, environ-
mental autocorrelation, etc.

5. Although developing new and better applications remains the most impor-
tant future direction, additional mathematical development is also needed
on specific topics such as the evolution of multiple traits, evolution in a
stochastic environment, tractable conditions for convergence stability in
Lyapunov and multitrait/multispecies models, and bifurcation theory. Fur-
ther exploration of unusual outcomes that occur only in atypical models and
of evolution in cyclic or chaotic populations are probably not high priorities.
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