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Abstract

Intensively sampled species abundance distributions (SADs) show left-skew on a log

scale. That is, there are too many rare species to fit a lognormal distribution. I propose

that this log-left-skew might be a sampling artefact. Monte Carlo simulations show that

taking progressively larger samples from a log-unskewed distribution (such as the

lognormal) causes log-skew to decrease asymptotically (move towards )1) until it

reaches the level of the underlying distribution (zero in this case). In contrast,

accumulating certain types of repeated small samples results in a log-skew that becomes

progressively more log-left-skewed to a level well beyond the underlying distribution.

These repeated samples correspond to samples from the same site over many years or

from many sites in 1 year. Data from empirical datasets show that log-skew generally

goes from positive (right-skewed) to negative (left-skewed) as the number of temporally

or spatially replicated samples increases. This suggests caution when interpreting log-left-

skew as a pattern that needs biological interpretation.
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I N T R O D U C T I O N

Most species are scarce. Plotting a histogram of the

abundances of different species within a community makes

this obvious. Scientists call this plot a species abundance

distribution (SAD). SADs invariably display a strongly right-

skewed pattern known as a hollow curve (Fisher et al. 1943;

Preston 1948, 1962; Whittaker 1965; May 1975; Brown

1995; Gaston & Blackburn 2000). A SAD describes

compactly the structure of a community, so understanding

the causes of SADs may tell ecologists a great deal about

how communities are structured.

In 1948, Preston proposed plotting a histogram of log-

transformed abundances instead of arithmetic abundances.

He discovered that the pattern on a log-scale is modal

(humped) and appears similar to a normal or Gaussian

distribution (e.g. Fig. 1). This would make the SAD lognormal.

But, because we do not observe very rare species, the left

end of the distribution appears chopped off or truncated.

Preston called this the �veil-line�. In the 1960s MacArthur

(Hutchinson 1967, p. 362), based on a hint of a pattern in

empirical data, suggested that if we could lift the veil we

would see a log-left-skewed distribution. Skew measures

asymmetry and one calculates skew as the third central

moment divided by the third power of the standard

deviation. A left-skewed distribution has negative skew,

i.e. a long and/or heavy left tail (relative to the right tail),

and the mean occurs to the left of (smaller) than the median

and the mode (e.g. Fig. 1). A log-left-skewed distribution

has negative (left) skew on a logarithmic scale (but may in

fact have right skew on an arithmetic scale, as do most

SADs).

Considerable empirical work on a diverse group of

organisms shows both Preston and MacArthur right.

Nearly all sampled communities of more than a few

species demonstrate a modal histogram on a log-scale

appearing nearly lognormal. Studies have shown that

increasing sampling intensity lifts the veil (moves it to

the left) and we observe progressively rarer species. Recent

work on intensively sampled data shows SADs often are

log-left-skewed (Nee et al. 1991; Gregory 1994, 2000;

Gaston & Blackburn 2000; Hubbell 2001; Magurran &

Henderson 2003). These studies show considerable

variation in the log-skew, with some showing right log-

skew and many showing left log-skew that is not

statistically significant. But in the end, intensively sampled
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SADs clearly show a pattern of log-left-skewness on

average which often proves statistically significant. Many

scientists now consider log-left-skew a benchmark of

theories purporting to explain SADs; theories must now

reproduce this left skew on log scale to be taken seriously

(Nee et al. 1991; Harte et al. 1999; Hubbell 2001).

Presumably, these scientists believe that this log-left-skew

represents the underlying natural world – that Mother

Nature possesses a bias toward rare species. Many

ecologists also feel relief at rejecting a simple lognormal

distribution (which has no skew), since the lognormal

distribution does not require a biological mechanism to

explain the SAD pattern (May 1975; McGill 2003) despite

the SADs fundamental importance.

I propose that the log-left-skew commonly found in

intensively sampled SADs need not signal the true under-

lying distribution, but could instead occur as a simple

artefact of the intensive sampling needed to lift the veil. I

demonstrate the potential for this effect by two simple

Monte Carlo simulations. The first looks purely at unveiling

by comparing progressively larger samples. The second

simulation looks at the effect of accumulating many small

samples. Using empirical data, I show that skew becomes

increasingly more negative (left-skewed) as samples are

added across space or time in a fashion similar to the second

model.

M E T H O D S A N D M A T E R I A L S

Empirical data

Two empirical datasets were used to test the applicability of

the models. The first data set is the North American

Breeding Bird Survey (BBS) (Robbins et al. 1986; Sauer et al.

1997). This survey takes counts of all birds seen or heard at

50 3-min stops along a 24.5 mi (40 km) route. Volunteers

survey thousands of routes during the breeding season in

the continental US and southern Canada. This process is

repeated every year, with the history of some routes going

back over thirty years. I used 1401 routes that were rated as

�good quality� by the administrators based on criteria such as

time of day and weather conditions for all 5 years from 1996

to 2000. Except where I report data by year, I use data

averaged across these same 5 years (1996–2000) to eliminate

noise.

The second empirical dataset is a census of tropical trees

found on a 50 ha plot on Barro Colorado Island (BCI) in

Panama (for detailed methods see Pyke et al. 2001; Condit

et al. 2002). This data was taken during a single year. Data is

available by individual 1 ha subplots.

Regional pool

For both Monte Carlo models I assume a two level

structure. The higher level is the regional pool (Ricklefs

1987) or metacommunity (sensu Hubbell 2001). The lower

level is called the local community. A single census measures

a local community. The regional community cannot be

directly measured.

Both Monte Carlo models share a single regional pool.

Before generating the regional pool, I set the species

diversity, called S. The regional pool is then generated by

drawing S abundances (and hence S species) with 15 digits

of precision S times from a lognormal distribution. Note

that the lognormal distribution is a continuous distribu-

tion and thus I am effectively assuming an infinite

number of individuals. On average, this process produces

an unskewed SAD. In all cases, I chose the parameters of

the lognormal distribution (Evans et al. 1993) to be

l ¼ 15.45 and r ¼ 1.30, so as to match the estimated

lognormal parameters for the total abundance of birds in

the BBS dataset. In both Monte Carlo models, I then

select a series of samples from this regional pool, drawing

whole (discrete) individuals at random in each sample

(with replacement). Sensitivity analysis performed using

either a logseries distribution for the regional pool (and

discrete individuals) or sampling without replacement

show no difference in the qualitative outcome (approxi-

mate degree of log-left-skew generated). Because the

lognormal distribution has no skew, I use the lognormal

throughout the rest of the paper. I also used sampling
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Figure 1 Example of log-left-skew. This figure shows a SAD for

bird abundances in the North American BBS study area (see

methods). I used kernel smoothing on the SAD to to eliminate

noise. I averaged this sample over 5 years and all 1401 good sites.

The dotted line is a reflection of the right side of the distribution.

Thus, the left tail is clearly higher than the right tail. In fact 12.7%

of the probability density lies in the region between the reflection

(dotted) line and the observed (solid line) left tail. Scientists usually

consider log-left-skew (i.e. an enlarged left tail) as a sign that rare

species are more common in nature (even on a log abundance

scale).
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with replacement in the rest of this paper, because it is

computationally faster and better fits the assumption of

the regional pool being infinite in size. Sensitivity analysis

on the size of the regional pool, S, also showed no

effects, and except where stated otherwise, I used

S ¼ 500.

Model I – unveiling via large sample

In the first simulation, I explore the effect of sample size of

the local community. I draw samples where the local

community ranges in size from 100 to 10 000 000 individ-

uals. I call this parameter (size of local community which, in

this case, equals size of the sample), NLOCAL. The skew of

these samples on a log scale were then calculated. Although

only one sequence of increasing local community sizes

(NLOCAL) is reported, this process was repeated many times

and the same results (excepting small random deviations)

were obtained.

Model I – accumulating small samples

In the second set of simulations, I explore the effect of

accumulating (through summing or averaging) multiple

small samples from the regional pool. I sample a local

community from the regional pool, where the size of the

local community (and sample size) is again called NLOCAL.

I then create a second sample of the same size (NLOCAL).

However, this second sample is not a de novo independent

sample of the regional pool. Instead, it is created by

removing a a percentage of the individuals in the first local

community and replacing only these removed individuals

via a sample from the regional pool. I call the percentage

of individuals removed and replaced via resampling

%REPLACE. Note that %REPLACE is a measure of

autocorrelation or (in the opposite direction) independence

between samples. When %REPLACE is 0%, the two

samples are identical and completely correlated. When

%REPLACE is 100%, the two samples are completely

independent with no autocorrelation between samples.

I then repeat this process of removing %REPLACE of the

individuals in the second sample (local community) and

replacing them via sampling from the regional pool to

generate a third sample. I repeat this process until I have

accumulated the specified number of samples, which I call

#SAMPLES. I then sum all #SAMPLES samples together

to obtain total abundances for each species found in any of

the local communities (usually a small subset of the

regional pool). I then calculate the skew on a log scale of

this SAD. Note that taking an average instead of a sum

does not change the shape (in particular the skew) of the

distribution.

R E S U L T S

Model I – unveiling via large sample

As expected, as one increases the sample size (NLOCAL) we

see the veil effect (sensu Preston 1948): small samples do not

reveal the rare species (Fig. 2). As Preston predicted, the

abundance of the rarest observed species does decrease as

sample sizes increases (Fig. 2). In particular, in every sample

one species occurs which has only one individual, so the veil

occurs at NVEIL ¼ 1 or if we express NVEIL as a percentage

of the total community then NVEIL ¼ 1/NLOCAL. How-

ever, as noted analytically by Pielou and Dewdney (Pielou

1977; Dewdney 1998), the veil does not work as the simple

truncation imagined by Preston. Instead, the shape of the

observed distribution of abundances in the local community

also changes as Pielou and Dewdney predicted. The initial

distributions with small sample size are strongly right-

skewed (because of the veil on the left tail) with the skew
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Figure 2 Representative example of the veiling process. (a) A

kernel-smoothed frequency distribution for samples ranging in size

from 100 to 10 000 000 individuals. The rightmost, most highly-

peaked curve is 100. These proceed in order to the leftmost,

lowest-peaked curve which is 10 000 000. Notice how the

rightmost curve has a heavier right tail, while the leftmost curves

have roughly equal tails (zero skew). As Preston noted, there is an

unveiling, but as Pielou and Dewdney have demonstrated, the

shape of the curve changes as well. In particular, the small sample

curves are more right skewed than the underlying curve. (b) A plot

of skew vs. sample size. The samples are drawn from a

metacommunity which follows a lognormal distribution. Small

samples (e.g. 100 individuals) of the metacommunity are highly

right skewed (positive). As the sample grows (e.g. 1 000 000) the

skew approaches the skew of the metacommunity (horizontal line

and here slightly less than 0 by chance). Further sampling causes

variation in skew but it remains centred around the skew of the

original metacommunity distribution.
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dropping down to the skew of the original metacommunity

(0 on average for the lognormal) as the sample size

approaches the size of the metacommunity (Fig. 2).

Model II – accumulation of small samples

Under the model of accumulation of small samples, skew

continues to become more negative. The resultant skew is

on average markedly more log-left-skewed than the log-

unskewed lognormal distribution and usually falls into the

range commonly reported on empirical data (roughly )0.2

to )0.4).

I now report the effect of each of the four parameters in

the model (S, #SAMPLES, NLOCAL and %REPLACE) on

final log-skew. The number of species in the regional pool,

S, over a range of 50–1000 species had no effect (one-way

ANOVA, P ¼ 0.50). Repeated model runs show that log-left-

skew increased markedly (log-skew became more negative)

as #SAMPLES increased from 1 to 10, slowing down as

#SAMPLES approached 15, but still decreasing (becoming

more log-left-skewed) somewhat out to #SAMPLES ¼ 30.

Therefore, I report all further results in this paper using

#SAMPLES ¼ 15. Beyond this effect of needing a certain

minimum number of repeated samples, #SAMPLES had

little effect.

The parameters that had the largest effect were NLOCAL

and %REPLACE. To explore the effect of these parame-

ters, I fixed S at 500 and #SAMPLES at 15, and I then ran

100 Monte Carlo simulations with a different random seed

for each combination of the two remaining parameters

(NLOCAL ¼ 100, 500, 1000, 5000, 10 000, 100 000 and

%REPLACE ¼ 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.6, 1.0) in a

fashion similar to a two-way ANOVA with 100 replicates. The

effects of both parameters show high statistical significance

(two-way ANOVA, both P < 0.001) as does the interaction

term (P < 0.001). Skew as a function of either parameter

shows a �check-mark pattern� (Fig. 3), where log-skew

becomes more negative (log-left-skewed) as either param-

eter increases initially, reaches a minimum (lowest log-skew)

at still fairly small values of the parameter, and then

increases (becomes less log-left-skewed, approaching zero-

log-skew) over the rest of the parameter range. I found the

largest absolute log-skew (most log-left-skewed) for inter-

mediate values of NLOCAL (around 500–1000) and for

%REPLACE around 5–10% (Fig. 3). When %REPLACE

equals 100%, the final log-skew is very small (absolute value

usually <0.02), and is statistically indistinguishable from 0,

the log-skew of the regional pool. This makes sense, as the

case where %REPLACE ¼ 100% equates mathematically

to the unveiling scenario described previously – it is simply

the accumulation of independent individuals with no

autocorrelation between samples. If the replacement

individuals come from within the surviving local community

rather than from the regional pool (e.g. via births), the

degree of log-left-skew increases even more (becomes more

negative).

In general, when %REPLACE falls in the range 5–20%,

NLOCAL falls in the range 500–10 000, and #SAMPLES

exceeds 10, the final log-skews are in the range of )0.20 to

)0.50, despite their being drawn from a regional pool with

no log-skew (on average). The range )0.20 to )0.50

corresponds well with the range of negative skews found in

empirical datasets (Nee et al. 1991; Gregory 1994, 2000).

Empirical data

Both data on birds from the BBS and data on trees from the

BCI 50-ha plot demonstrate the effect of spatial and

temporal autocorrelation and repeated sampling (Fig. 4).

The average route in the BBS data has an arithmetic skew of

mean ± SD ¼ 3.18 ± 1.14 and a log-skew of 0.11 ± 0.26

(i.e. log-right-skewed). The log-skew of the sample pooled

across all sites is )0.349 (i.e. log-left-skewed), quite similar

to the values found by Gregory for birds in Europe (2000).

Thus, on average, each route starts with a strong right skew,

with some right skew appearing even on a log scale. Despite
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Figure 3 Effect of parameters on degree of log-left-skew.

(a) shows the effect of NLOCAL (note the log-scale on the x-axis)

and (b) shows the effect of %REPLACE. Both demonstrate a

�checkmark� pattern. Log-skew is most negative (made most left-

skewed) for intermediate parameters. The effects of both

parameters are significant (P < 0.001). For the most part the

interaction of the two terms is additive, except that when NLOCAL

is very small (NLOCAL ¼ 100) and and %REPLACE is very small

(%REPLACE ¼ 0.01, 0.05), then the interaction term is negative

(P < 0.001) giving even lower skew values. For these figures,

S ¼ 500, SAMPLES ¼ 15, and the remaining parameter [%RE-

PLACE in (a), NLOCAL in (b)] varies across a wide range of values.
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this, log-skew decreases (becomes more left-log-skewed) as

the number of spatially or temporally replicated samples

increases (see Fig. 4). Similar results are observed for

increases in spatial scale for the BCI data (see Fig. 4),

although in this case log-skew merely approaches zero (no

log-skew, rather than a negative or left log-skew).

D I S C U S S I O N A N D C O N C L U S I O N S

Causes of log-skew in models I and II

The cause of log-skew dropping towards zero (unskewed) in

the first Monte Carlo simulation (unveiling) is fairly obvious:

we find rare species only in large samples, truncating the left

tail and making the right tail larger in comparison.

Increasing sample size merely removes the log-right-skew

originally caused by small sample size.

The cause of the increasingly more negative (left) log-skew

in the second Monte Carlo simulation (accumulation of small

samples) is less obvious. The mechanism for the repeated

samples case depends on autocorrelation between the

repeated samples (as evidenced by the disappearance of

log-left-skew below zero when %REPLACE increased to

100% and by the increase in log-left-skew when replace-

ments came from within the remaining local community

instead of the regional pool). The regionally common species

that make it into the local pool usually remain in the local

pool through all the replicated samples because of their

commonness within the local community and the auto-

correlation. Those rare species that do make it into the

local community very often disappear after just a few

repeated samples because of their rarity (i.e. they are more

likely to have all individuals replaced than a common

species). See Fig. 5. The relative abundance of these

species (as a proportion of the total community) then

continues to decrease as the number of samples increases,

only because of their absence from the additional samples.

This causes the rare species to have extremely low

abundances. This creates the log-left-skew in excess of

that found in the regional pool.

This same type of autocorrelation has been described in a

different context as the �positive occupancy–abundance
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Figure 4 Changes in species abundance distribution (SAD) skew

as samples are repeated over time or space. (a) Looking at

abundance across all routes studied in the BBS data, the skew goes

from slightly positive to strongly negative as we go from sampling

one to sampling 20 years. (b) Again in the BBS data, this same

pattern occurs (with more noise) as routes (space) are added. In

both cases, the initial skew is slightly positive and ends up with a

final skew of c. )0.35. The exact nature of this graph depends on

which route is used to start with. Certain routes along the coast

display a more complicated pattern. (c) A similar graph for the BCI

data. As plots are added (each 1 hectare in size), the skew goes

from strongly positive (log-right-skewed) to very slightly log-left-

skewed ()0.0029). It is unclear whether the BCI data demonstrates

the unveiling scenario or the repeated sampling scenario as

described in this paper.
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Figure 5 Interaction between regional abundance and the number

of samples in which a species is found. Very abundant species are

found in every sample (all 15 samples). Rarer species are much

more likely to be found in only a few samples. Species found in

zero samples are omitted (but are found at all levels of regional

abundance). The top figure (a) is from a simulation run of the

model II (accumulation of small samples). The bottom figure (b) is

for BBS data. When abundance is transformed to a log scale, these

graphs produce data that appears similar to a logistic curve. The

pattern shown in these graphs is closely related to the positive

occupancy-abundance relationship as mentioned in the text.
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relationship� (Hanski 1982; Brown 1984, 1995; Gaston et al.

1997, 2000).

Relevance of models to empirical data

As this repeated sampling effect can generate strongly log-

left-skewed populations even when sampling from unske-

wed populations, one must ask whether the mechanism is

biologically relevant. The fact that only very intensively

sampled datasets show log-left-skew suggests that model II

(accumulation of small samples) might be relevant. The

sampling intensity is generated by repeated samples in space

or in time, or often both space and time. For example, data

on birds at the scale of a nation make up the majority of

claims for left skew (Nee et al. 1991; Gregory 1994; Gregory

& Gaston 2000). This data always derives from surveys

conducted across many years and at many sites.

The second model (accumulated samples) was specifically

designed to simulate the biological process involved when

samples are accumulated from a given spatial location (local

community) over time. Individuals die (%REPLACE) and

are replaced. In the case where replacements come from the

regional pool, this represents migration. In the case where

the replacements come from the remaining local pool, this

represents births. #SAMPLES in this scenario equates to

the number of years.

Moreover, the empirical data from the BBS confirms that

log-skew becomes increasingly negative (log-left-skewed) as

the number of years increases in a fashion very similar to

that in which the log-skew becomes more negative in the

simulations as #SAMPLES increases.

The relevance of the second model is more subtle in cases

where sampling intensity is achieved by increasing spatial

scale instead of time. Individuals do not remain to be

sampled in ensuing samples as one moves across space.

However, there is a well-documented pattern of gradual

decay of similarity of species abundance and composition

over space (Rosenzweig 1995; Condit et al. 2002) which

creates an autocorrelation between samples very similar to

that generated by my model II (accumulated small samples).

In particular, common species disappear from ensuing

samples much less frequently than rare spaces (in Fig. 5

compare the top figure, i.e. from the model, and the bottom

figure, i.e. from empirical data accumulated across space).

Thus, any process which creates partial autocorrelation

between samples with rare species more likely to disappear

from ensuing samples will generate this log-left-skew as

repeated sampling occurs.

Related work

Gotelli & Colwell (2001) have pointed out that sampling can

produce many pitfalls in the estimation of species richness

as well. Several authors have pointed out that the shape of

the SAD changes with scale. Whittaker (1965) suggested

that the shape of the SAD depends on taxonomic scale

(number of species). Tokeshi (1993) cautioned that the

shape of the SAD might depend on spatial and temporal

scale, and Wilson and coworkers (Wilson et al. 1996, 1998)

confirmed this empirically. Other authors have pointed out

that a variety of patterns change with scale and have

corresponding changes in the causal processes with scale

(Levin 1992; Rosenzweig 1995). However, I suggest that this

work should not be confounded with the important issues

of scale. For example, Fig. 4 shows that there are marked

changes in log-left-skew simply in going from 2 to 5 years or

5 to 15 ha. Most people would not consider this a change in

scale, merely an incremental increase in time and space. This

model does not address the issue of whether the shape of

the SAD might vary with scale. This model does suggest

that even at a single scale, the autocorrelated nature of

accumulated, non-independent samples can artificially create

the appearance of changing shape of the SAD.

This work shares some similarities to that of Hubbell

(2001), starting with the idea of a two-level community

structure (local and regional). Hubbell’s model also empha-

sizes dynamic turnover (replacement of individuals) in the

local community as a central process. However, Hubbell

emphasizes the continuously varying parameter, m, which

measures the amount of replacement from the local

community vs. the regional pool, while I only modelled

the two extremes (m ¼ 0, and 1). In contrast, I emphasize

the continuously varying parameter for rate of turnover

(%REPLACE), while Hubbell usually de-emphasizes this

parameter (one turnover per time step). Despite these

differences in emphasis, it is interesting to note that Hubbell

also points out that log-skew changes as a result of variation

in this process of local turnover and replacement (Hubbell

2001, p. 133). However, he has rare species disappearing in

the underlying distribution through dispersal limitation

(parameter m), while I have it occurring because of

autocorrelation between samples. These two effects may

ultimately trace back to the same underlying biology. It

should be noted that although Hubbell (2001) cites the BCI

data as an example of log-left-skew (p. 134), it in fact has a

log-skew quite close to zero ()0.0029). Note that because I

used a dataset from the same location but different years,

the quantitative results will vary slightly but the shape of the

SAD does not change noticeably. This log-skew of zero is

because the distribution is truncated with a minimum

abundance of one individual. If one imagines the left-tail

being extended out, then the SAD does appear as if it would

be left-skewed (Hubbell’s Fig. 5.7).

Several authors working with large empirical datasets

have arrived at the conclusion that accidental species cause

the log-left-skew. Gregory (2000) noted that the removal of
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10 accidental species (predominantly African or Asian in

origin) eliminated the large log-left-skew observed in

Europe as a whole (i.e. made log-skew equal to zero).

Accidental species are species that are not native to the area

under observation and are observed only occasionally (i.e. in

a few years). Gregory’s empirical observation supports the

simulation results in this paper where log-left-skew is

created by species that appear in only a few of the repeated

samples. Magurran & Henderson (2003) found a very similar

result in a 21-year dataset on an estuarine fish community.

They found that �core� species that are �persistent, abundant

and biologically associated with estuarine habitats� follow a

lognormal distribution (with zero log-skew), while the

�occasional� species which occur infrequently in the record

follow a logseries distribution which is strongly left-skewed

on a log-scale. Adding these two groups together produces a

log-left-skewed distribution. This again supports the results

given by model II (accumulation of small samples) where

log-left-skew is generated by species that occur in only a few

of the samples. Moreover, Magurran and Henderson display

a graph which demonstrates an autocorrelation signature

very similar to that found in the second model and the BBS

data (my Fig. 5 vs. their Fig. 1a if the axes are swapped).

Finally, a close analysis of the BCI dataset suggests that the

appearance of left-skew is almost entirely the result of

species that were observed to have only one individual in

the 50 ha plot (and that species with one individual are more

common than species with 2, 3 or 4 individuals). Removal of

species with only one individual changes log skew from

)0.0029 to 0.166. These might well be regarded as

accidental or occasional species as well, although a more

careful analysis of the biology and the natural habitat

affinities of these rare species is necessary to justify calling

them accidental. Such careful studies are vitally important, as

arbitrarily removing rare species will always make a

distribution less left-skewed. Magurran and Henderson give

a very careful analysis of the biology that justifies their

separation of species as core vs. occasional.

C O N C L U S I O N S

Four caveats emerge from this work when exploring skew in

SADs:

1 Unveiling does not work as a simple gradual revealing of

the left side of the distribution. Instead, the whole

distribution changes shape as the number of individuals

sampled increases. The true nature of unveiling has been

noted before (Pielou 1977; Dewdney 1998), but is still

often ignored.

2 Purely statistical mechanisms without biology may cause

the observed propensity for log-left-skew. Thus, theories

do not need to generate log-left-skewed SADs to be

considered realistic. Producing lognormal curves for

single sample SADs remain consistent with empirical

data. This statement should be qualified by recognizing

that the causes of spatial and temporal autocorrelation

are clearly biological. Another qualification is that there

may still be other causes of log-left-skew that indicate

that Mother Nature does indeed favour rarer species. This

model does not rule them out, it merely argues that we

need to use very careful statistics and address the problem

of autocorrelated accumulated samples before making

such a claim.

3 This paper should serve as a caution to those who wish

to devote great effort to distinguishing curves (and

associated theories) based on small differences in the

tails of a probability distribution. By definition, tails

occur where events are rarest and hence most prone to

sampling effects. Similarly, although the log transform is

a natural transformation for population abundances, it

has the effect of emphasizing the left tail at the expense

of the rest of the distribution. And despite what

I perceive as an emerging �tyranny of the log scale� for

SADs, the right tail drives many important ecological

questions (e.g. flow of energy or nutrients through an

ecosystem).

4 Empiricists must remember that sampling does skew the

underlying distribution: small samples cause artificial

right skew and, paradoxically, the more we sample

(when in a repeated, autocorrelated fashion) the more

we cause log-left-skew distortion and lose information

about the underlying distribution. The solution is to

follow as much as possible the approach suggested by

the first (unveiling) model by taking a single large

sample. This approach gives a more accurate view of the

underlying distribution than accumulating repeated small

samples.

In conclusion, this paper suggests a simple, statistical,

non-biological mechanism for the often observed log-left-

skew in SADs. This mechanism uses the idea of repeated,

auto-correlated sampling. Monte Carlo simulations show

that repeated, auto-correlated sampling as described above

clearly generates log-left-skew not found in the underlying

distribution and hence an excess of rare species (on a log

scale). Analysis of empirical data shows that log-skew

changes from positive to negative as spatial and temporal

replicate samples are added. We know that spatial and

temporal autocorrelation occurs in these samples. Thus, the

empirical data seem to support the idea that the repeated,

autocorrelated sample mechanism of the Monte Carlo

simulations could easily cause the log-left-skew found in

empirical data. We need to do additional work to rule out

this statistical, abiological theory before we claim that

Mother Nature prefers rare species.
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