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Abstract

This paper develops a mechanistic model of the population dynamics and coevolution of mutualisms such as plants and
mycorrhizae where one resource is traded for another resource. The mechanism is based on limiting resources and is derived
from von Liebig’s law of the minimum [von Liebig, 1862, Die Chemie in irher Anwendung auf Agricultur und Physiologie.
7e ed. F. Vieweg und Sohn, Braunschwieg] and Tilman’s R* [Tilman, D., 1980, Resources: a graphical-mechanistic approach
to competition and predation, Am. Nat. 116, 362–393]. The model makes several predictions: (1) resource limitations cause
mutualisms to have stable population dynamics, despite previous predictions to the contrary, (2) game-theory based models of
evolution show that potential coevolving mutualists face a Prisoner’s-dilemma-like paradox, rigorously confirming the intuition
of many people and (3) a mechanism which enforces fair-trade will eliminate the dilemma and a mutualism will evolve, despite
having no gene flow between the species.
©

K

1

s
s
(
b
(

S
2

r a
in

bon
in
bee
e-
o-
his
-
t of
;

ek-
y

0
d

2005 Elsevier B.V. All rights reserved.

eywords: Mutualism; ESS; Coevolution; Mycorrhizae; Zooxanthellae; R*

. Introduction

Mutualism is a type of interaction between two
pecies. Specifically, mutualism occurs when one
pecies provides some benefit that it has in abundance
relative to the other species) in exchange for some
enefit that the other species has in relative abundance
see similar definition inBronstein, 1994a). The bene-
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fit exchanged might be good (e.g., some nutrient) o
service (e.g., pollination, protection). For example,
insect-mediated pollination, a plant exchanges car
energy in the form of nectar or pollen which it has
relative abundance due to photosynthesis with a
which provides directed dispersal (of pollen), som
thing which it has in relative abundance due to its m
bility. In this case, a resource is traded for a service. T
idea of trading goods with differing availability to dif
ferent species is very similar to the economic concep
comparative advantage (Noe and Hammerstein, 1995
Schwartz and Hoeksema, 1998; Holland, 2002; Ho
sema and Schwartz, 2003), which has been applied b
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economists to trade between nations (Ricardo, 1821)
and to specialization of labor (Smith, 1776).

This complex idea of comparative advantage has
often been reduced to simply saying mutualisms are a
+/+ interaction (Begon et al., 1986; Bronstein, 1994b).
The definition of mutualism as a +/+ interaction has re-
sulted in repeated attempts to model mutualism popula-
tion dynamics using the classic Lotka–Volterra models,
which have proved so durable in modeling competition
and predation. The first such model was byGause and
Witt (1935)who merely converted the interspecific in-
teraction coefficients from negative to positive in the
Lotka–Volterra competition model. The problem with
their model was that it predicted strong mutualisms
would be unstable, with both populations racing off
to infinity. Many later models of mutualism dynamics
also resulted in infinite populations (seeBoucher, 1985
for a review of this phenomenon). Eventually however,
modelers developed models that had both stable popu-
lation dynamics and a mechanistic basis albeit for the
specific case of handling time of pollinators or ant farm-
ers (Pierce and Young, 1986; Wright, 1989; Holland et
al., 2002). Other researchers noticed that a third species
that was competitive (Heithaus et al., 1980) or exploita-
tive (Rai et al., 1983; Tonkyn, 1986; Ringel et al., 1996)
to one of the mutualistic partners could limit the pop-
ulations.

A third and perhaps most fundamental biological
reason that mutualistic species populations do not go
to infinity is that they face resource limitations. This has
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examples of this type of mutualism are:

• legumes and rhizobium bacteria (the legumes pro-
vide carbon energy in exchange for nitrogen in a
usable form) (Martin, 1984);

• plants and mycorhizzal fungi (the plants provide car-
bon energy in exchange for a variety of mineral nu-
trients, especially phosphorous) (Allen and Allen,
1990);

• coral coelenterates and zooxanthellae (algae that
live symbiotically inside the coral animals, receiv-
ing protection and mineral nutrients in exchange for
carbon energy) (Battey, 1992; Rowan, 1998).

The pollinator mutualism given as an example in the
introduction would not be in this subset of bitrophic
mutualisms. By dealing with a specific subset of mu-
tualisms, I will be able to make the model more mech-
anistic.

The effect of limiting resources has been well stud-
ied, especially in plants. Liebig’s law of the minimum
(von Liebig, 1862) states that population growth will
be constrained by whatever resource is most limiting.
Tilman (1980, 1988)developed this into an isocline-
based model of plant population dynamics. Inherent
in the idea that there is one limiting resource is the
idea that the plant has excess capacity for capture of
other resources. This returns us to the idea that mutu-
alism is the exchange of goods in excess (in this case
non-limiting resources) for goods that are limiting (the
Liebig limiting resource) or in economic terms “com-
p e ex-
p tion
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een modeled as a limit on mutualisms phenomeno
cally. For example, some of the above models inco
ate a phenomenological self-regulation, i.e. a den
ependent term commonly calledK. In this paper,

mplemented a model based specifically on the m
nism of limiting resources by implementing a mo
f Leibig’s law of the minimum (von Liebig, 1862).

. Mechanism behind mutualism

In the rest of this paper, I will focus on one s
ific subcategory of mutualisms: facultative, bitrop
utualisms. Facultative mutualisms are those in w
ach individual is capable of living and reproduc
ithout the other individual. A bitrophic mutualism
efined here as one in which each species is prov
ome form of foodstuff to the other. Three well-stud
arative advantage.” Schwartz and Hoeksema hav
lored the idea of comparative advantage in rela

o mutualisms (Schwartz et al., 2002; Hoeksema a
chwartz, 2003). However, their methodology based
conomics techniques can only show when it would
ptimal to engage in a mutualism. It is well known th
rganisms do not always evolve to beneficial sce

os (Williams, 1966). In this paper, I extend Schwar
nd Hoeksema’s work on comparative advantage b

ng game theory to explore whether a mutualism w
volve when it is beneficial.

. A mathematical representation (methods)

.1. Fitness equations

The first step in developing any population mode
o write a formula for fitness (per capita growth ra
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as a function of the variables of interest, here the sizes
of the two mutualistic populations and the level of re-
sources available to the two species. Once complete, I
will extend this to two organisms interacting in a mu-
tualistic fashion.

Assume there are two species whose population
sizes are given byN andM. LetR1N denote the amount
of resource #1 (e.g., carbon energy) available per unit
time to speciesN. Note thatR1N is not the same asR1M

because our assumption is that the two species have
different comparative advantages, i.e. access to differ-
ential amounts of resources. Letu1N be the per capita
usage of resource #1 by speciesN in a unit of time.
Thus, all resources will be exactly used ifN = R1N

u1N
,

which we may denote asK1N. Similar variables can be
defined for resource #2 (e.g., mineral nutrients) and for
speciesM (Table 1).

How can one use these to describe the fitness of a
population dependent on these two resources? A few
qualitative criteria that one might wish a fitness func-
tion to meet are:

1. fitness of the population should be close tor (max-
imum per capita growth rate) when the population
size is close to zero (relative to the resource con-
straints);

2. fitness should monotonically decrease as the popu-
lation sizeN increases (note some argument could
be made about fitness increasing at small popula-
tions due to the Allee affect but this is not modeled
herein);

3. fitness should be at zero (no growth or decline in
population) when it hits the first resource constraint.
In practice fitness might possibly reach zero slightly
before being limited by the most limiting resource
if it is also receiving a density dependent depres-
sion from nearing the second resource constraint as
well;

4. fitness should be negative once population size ex-
ceeds the first resource constraint.

A simple implementation of the Liebig minimum
principle meets these critieria. The most literal imple-
mentation would use a step function (Sa). Let

Sa(x) =
{

1 if x ≤ a

0 if x > a

Then fitness could be written as

W(N, R1N, R2M) = r(2 × S(
R1N
u1N

)(N)S(
R2N
u2N

)(N) − 1)

(1)

Table 1
Summary of parameters used in the model

P

N
M
R y or nit

u e typei to sp
k easur

W ere fit
discret
ze

r ecies
c is a st

p resou
specie

P d by th
h stratep

h lity and
arameter Definition

Population size of species #1
Population size of species #2

ij Amount of resource typei (e.g., carbon energ
speciesj (M or N)

ij Per capita resource requirement for resourc

ij = Rij/uij. The amount of resource available m
carrying capacity)

() Fitness as a function of various parameters. H
per capita growth rate). Fitness is used in a
thatW = 0 gives an unchanging population si
The maximum per-capita growth rate of a sp
Strength of Leibig’s law. Forc =∞, the response
has no effect on fitness.

ij The proportion (ranging from 0 to 1) of the
resource typei that speciesj gives to the other
total resources extracted by the species)

ij The proportion of resource (as above) neede
field against a population of conspecifics wit
Rate of evolution. Usually related to heritibai
Units

# of individuals
# of individuals

rogen) available per unit time to e.g., J/s or Moles/s

eciesj e.g., J/s/individual
ed in units of individuals (i.e., the e.g., J/individual

ness is defined as 1/N dN/dt (i.e., the
e time context and normalized such

Individuals/individual/time

1/time
ep function. Forc = 0, the resource Dimensionless

rce requirements for speciesj for
s (hence (1 +p)uN represents the

Dimensionless

e target individual when playing the
gyij

Dimensionless

variability of the trait under study Dimensionless
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wherer is the maximal growth rate and the multiplica-
tion by 2 and subtraction of 1 causes the range to go
from−r to r (instead of 0 to r).Paris (1992)shows that
Liebig’s law extended to multiple limiting resources is
well modeled by multiplication of the response to indi-
vidual resources, as I have done above. Aside from the
mathematical difficulties of dealing with a discontin-
uous step function, it is widely recognized in biology
that the transition is usually somewhat smoother and
more gradual than a pure step function (Paris, 1992;
Sinclair and Park, 1993). Thus, I replace the step func-
tion Sa(x) with the smooth sigmoid logistic function,
La(x) = 1/(1 + exp(x − a)). I also add a parameter,c, to
control the rate of drop-off (La(x) → Sa(x) asc → ∞).
This gives:

WN = r

[
2

1

1 + exp[−c(R1N − u1NN)]

× 1

1 + exp[−c(R2N − u2NN)]
− 1

]
(2)

This equation can be parameterized in several ways.
For example, theu’s can be absorbed into thec’s and the
exponential terms can be written as exp[−c(K1N − N)]
instead. SeeFig. 1for a view of the fitness surface as a
function of the relative availability of the two resources.
This figure is very similar to the isocline figures in
Tilman’s R* theory except that he only draws one

F bility
o sents
p

Fig. 2. Shape of the fitness function vs. population size (N). As dis-
cussed in the text, this function uses the product of two logistic
functions to obtain a smoothed version of the product of two-step
functions. The first figure shows how the slope parameter (c) affects
the shape of the function. The second figure shows how variations in
the relative availability of resources affect the function.

isocline—the zero net growth isocline—and this iso-
cline has a sharp (90◦) corner, rather than the rounded
corners here. The rounding of corners here comes from
the use of the logistic function rather than the step func-
tion. Tilman recognized this curvature too and called
it “interactive essential resources.” This diagram also
looks very similar to tests of Liebig’s law of the min-
imum based on crop yields (Paris, 1992), except that
there the height of surface is given by crop yield rather
than fitness. Also seeFig. 2for a one-dimensional view
of how varyingc andR1N change the shape of the fitness
function.

The last step is to extend the fitness functionW from
that for a single population to that of two populations
interacting in a mutualistic fashion. To do this, I need a
few more parameters. Letp1N represent the proportion
of resource #1 (R1N) used by speciesN, that speciesN
gives up toM. Thus, (1 +p)u represents the amount of
resources extracted by an individual. Letp2M represent
the analogous proportion of resource #2 thatM gives
to N. Let ε represent the conversion efficiency (i.e., as-
sumeε is the fraction of transferred resource that is
actually usable by the other species). If the resource
form is identical (e.g., sucrose used by both partners),
ig. 1. Fitness surface for one species as a function of availa
f the two resources. The vertical axis (height of surface) repre
er capita growth rate.
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thenε might be close to 100% (minus a small percent-
age for transportation costs). At the other extreme, be-
tween trophic level conversion efficiencies are typically
about 10%. Conservatively, I have assumed here that
interspecific mutualistic conversion efficienciesε are
also about 10%. This number may be far too low if the
mutualistic partner uses the nutrient in the same form
as the donor species. However, this parameter has only
quantitative effects on the results (sensitivity analysis
run for ε = 0.05, 0.1, 0.2, 0.3, 0.5, 0.9, 1.0). I can now
define the fitness for speciesN as:

WN (p1N, p2M, N, M)

= r

[
2

1

1 + exp[−c(R1N − u1NN − p1Nu1NN)]

× 1

1 + exp[−c(R2N − u2NN + εp2Mu2MM)]
− 1

]

(3)

An analogous function gives the fitness for speciesM.

3.2. Population dynamics

Population dynamics are given by a discrete form of
the traditional equations, where a fitness (here defined
as a per capita growth rate) of zero indicates no change
in population size:

N

M

w r
s iffi-
c ra-
t ere-
f s of
t ndi-
t tion
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p rame-
t
e ,
e have
n

3.3. Coevolution

Roughgarden (1976, 1983)has suggested that co-
evolution will evolve to the point, where equilibrium
population sizes are either maximized or minimized
according to a specific mathematical rule based on
derivatives of the community matrix. However, it has
been shown that when there is also frequency depen-
dence, Roughgarden’s rule can produce inaccurate re-
sults (Brown and Vincent, 1987; also seeRoughgarden,
1987; Taper and Case, 1992) and a game-theory based
approach is necessary (Vincent and Brown, 1984,
1987). Brown and Vincent (1987)show that coevolu-
tion (with density dependence) often induces intraspe-
cific frequency dependence, even when it does not ap-
pear to be present. I will show, shortly, that without
special restrictions, this model evolves to points other
than those that maximize/minimize population size,
suggesting that frequency dependence is important in
this model.

Frequency dependence is incorporated by looking at
the fitness of an individual playing one strategy, when
the rest of the members of its species play an alternative
strategy (i.e., fitness is given byW(P1N, p1N, p2M, N, M)
instead ofW(p1N, p2M, N, M) whereP1N is the strategy
of an individual andp1N is the strategy of its species as a
whole). This is known as “playing the field” (Maynard-
Smith, 1982). When the individual fitness is maximized
by playing the same strategy as the population (p1N) for
some given strategy for the population, then that given
s
S p-
p in-
d same
s egree
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s
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b ce on
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l ter,
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w e
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f la-
t ).
t+1 = Nt + NtWN (p1N, p2M, N, M) (4)

t+1 = Mt + MtWM(p1N, p2M, N, M) (5)

Equilibrium population sizes (N*, M*) are found
hen WN(p1N, p2M, N*, M*) = 0 and likewise fo
peciesM. Unfortunately, these equations are d
ult to solve analytically, due to the mixture of
ional functions and transcendental functions. Th
ore, all subsequent results are numerical solution
he difference equations over a range of initial co
ions and parameters (found by iterating the popula
ynamics until an equilibrium is reached). All resu
resented, unless otherwise stated, are for the pa

ersr = 0.4,uij = 1 andR1N = R2M = 150 (i.e.,K1N = 150,
tc.),R2N = R1M = 100,c = 0.08 andε = 0.1. However
xcept where noted, variations in these parameters
o qualitative effects on the results (Figs. 2, 3, 5 and 8).
trategy is an uninvadable and hence an ESS (Maynard-
mith and Price, 1973). However, in this particular a
lication to mutualism, intraspecific competition is
ependent of the strategy chosen by others of the
pecies and depends only on one’s own strategy (d
f participation in mutualism) and the partner spec
trategy. In short,WN(P1, p1N, p2N, N, M) = WN(P1,
2N, N, M). Thus, the only frequency dependenc
etween species; there is no frequency dependen

ndividual variation within a species. This is somew
nusual for adapative dynamics models but is none

ess biologically correct for this model. Hereaf
will use p1N to represent the individual strategy
ill also often use the variablep as shorthand for th
trategy of either speciesN(p1N) or speciesM(p2M).

The ESS points occur forp1N, where∂W/∂p1N = 0
or Eq. (3) for both species and where the popu
ions are in dynamic equilibrium (i.e.,W = 0 as above
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Again, the analytical solutions are intractable, so I use
numerical simulations based on repeated iteration of
the idea of a dynamic game (Vincent and Brown, 1987;
Vincent, 1990) until equilibrium in population sizes
(N, M) and strategies (p1, p2) emerge. Specifically,
I let:

�p1N = h
∂

∂p1N

W(p1N, p2M, N, M) (6)

and similarly for speciesM. The parameterh controls
rate of evolution and is usually related to heritability. It
has been noted that strategies, which maximize fitness
are not always obtainable (Eshel, 1972; Abrams et al.,
1993; Vincent et al., 1996; Geritz et al., 1997, 1998),
but this is avoided by using numerical methods (i.e.,
using the dynamics to find the ESS points).

4. Results

4.1. Population dynamics

Several things are to be noticed about the popula-
tion dynamics described by Eqs.(4) and(5) in com-
bination with Eq.(3). First, this system is highly sta-
ble. All initial conditions (with at least one member
of each species present) converge to an attractor and
do so quite quickly (seeFig. 3). The exact equilibrium
value is always near to but often not exactly equal to
min(K1N, K2N). This is because the higher equilibrium
value (sayK2N) has some influence on the equilibrium
population, although the lower equilibrium value (say
K1N) largely dominates. The attractor is usually a stable
equilibrium point, although the parameter,c, serves as
a bifurcation parameter. Cycles of order 2 and higher

F popula represents
t
s

ig. 3. Population dynamics of the system. The vertical axis is

he dynamics for one set of initial conditions with the evolution of spec
lope parameter,c. Although there is still a finite attractor, it becomes a
tion size and the horizontal axis is time. Each row in the figure

ies #1 on the left and species #2 on the right. The fourth row changes the
two-cycle (with higher order cycles possible).
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Fig. 4. Plot of the equilibrium population size vs. the evolultionary
triat,p (the proportion of resources that is shared). The bottom graph
is a magnified view of the region of interest in the top graph. One
can see that population size is maximized for an intermediate value
of p.

can be obtained with c large enough (i.e., near enough
to a discontinuous step function).

Secondly, the equilibrium population densities are
higher at intermediate values of rate of giving resources
(i.e.,p) (seeFig. 4). The equilibrium population density
initially increases withp near 0, reaches a maximum
and then decreases asp approaches 1. Although, as we
shall see, populations do not always evolve to maximize
their equilibrium population density, this finding is at
least suggestive. The next section on coevolution will
make this more rigorous.

Finally, if the resource availabilities change, then the
optimal degree of participation in a mutualism (i.e.,p)
as measured by the equilibrium population size varies
(seeFig. 5). If the differential in resource availability
increases (sayR1N/R2N is 150/75 instead of 150/100),
then the equilibrium shifts to a higherp (greater partic-
ipation in a mutualism)—here about 0.55 versus 0.125.
If the resource differential decreases (say 150/150, i.e.
no differential in resource availability), then the pop-
ulation density is highest whenp = 0, i.e. there is no
participation in a mutualism.

4.2. Coevolution

The first result is that if eachp (p1N and p2M) is
allowed to evolve independently, the fitness landscape

Fig. 5. The effect of varying relative resource availabilities on equi-
librium population sizes. One can see that equilibrium population
sizes are highest at an intermediate value ofp when the traded re-
source is more abundant and that a zero value ofp is favored when
the shared resource is in equal or lower abundance.

(Fig. 6) clearly shows that the fitness for speciesN is
maximized if its ownp is minimized to 0 and its part-
ner’s p is maximized to 1. The converse is true from
the point of view ofM. Under the evolutionary dynam-
ics described, the population evolves top1N = p2M = 0.
In short, nobody participates in the mutualism, even
though both populations would be “better-off” if they
did (as measured by equilibrium population size).

This is exactly analogous to the discrete strategy
matrix game commonly referred to as the Prisoner’s
Dilemma (Axelrod and Hamilton, 1981), where both
prisoners would be better off if they would cooper-
ate, but because defecting always increases individual
fitness, cooperating is not an ESS and everybody de-
fects. In the mutualism system under study, each pop-
ulation would be better off if the mutualism existed,
but because the other population might take resources
without giving resources, the populations coevolve to
non-interaction, i.e. no mutualism.

However if the twop’s are coupled and forced to
evolve in the same direction (here accomplished by
settingp = p1N = p2M), then the shape of the adaptive
landscape changes (seeFig. 7) and the system evolves
to a point withp > 0 (p evolves to the point where the
crosshairs meet). Thus, having the degree of partic-
ipation by each mutualistic partner coupled together
allows for an ESS to develop. This can be thought of as
enforcement of fair-trade. Note that although the im-
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Fig. 6. The fitness surface for a species as a function of its own
and its mutualistic partners strategy. Not surprisingly, we see that
fitness is highest if the target species donates no resources (PN = 0)
and the partner species donates all of its resources (PM = 1). This is
effectively a Prisoner’s dilemma situation, even though it occurs here
between species.

plementation demonstrated in the pictures is the limited
special case ofp = p1N = p2M, the qualitative conclusion
does not change if there is any increasing, monotonic
relationship between the twop’s.

Fig. 7. A plot of the fitness surface similar to the previous figure.
However, in this figure the strategies,p, of the two species are linked
through some sort of “fair-trade” mechanism. The zero fitness line
is shown as a thick dashed line. The evolutionary endpoint of this
system is found at the intersection of the cross hairs. We can see
that this endpoint occurs on the zero-fitness line at the point, which
maximizes equilibrium population size.

Fig. 8. This figure compares the fitness surface of the two species,
assuming “fair-trade” enforcement but with resources being available
either differentially or not. This diagram suggests (correctly as it turns
out if we follow the evolutionary process to the end), that there will
be an interior (mutualistic) equilibrium only if there is a resource
differential.

The other condition necessary for a mutualism to
achieve an ESS is that which was already hinted at in
the population dynamics section above. There must be
a differential availability of resources such that in each
direction one gives what one has in excess in exchange
for what one lacks. This was first shown by Schwartz
and Hoeksema using the economic idea of comparative
advantage (Schwartz and Hoeksema, 1998; Hoeksema
and Schwartz, 2003). If the resource availability
differential (comparative advantage) disappears then
the ability to obtain an optimum withp > 0 also
disappears (Fig. 8).

So far I have shown that an ESS is not possible
in this model if thep’s (degree of participation in the
mutualism) are allowed to evolve independently and
also not possible if the resources are not differentially
available. What if these two conditions are met (p’s
coupled, resource availability different)? Under these
conditions, there is a point that meets the criteria of
an ESS and the system does indeed evolve to this point
under the dynamical recurrence equations given above.
Fig. 9shows a one-dimensional view of fitness versus
individual strategy,p. We see that a value ofp > 0 (and
hence a mutualism) is an ESS.Fig. 10(uncoupled) and
Fig. 11 (coupled or enforcement of fair-trade) show
the same figure as it evolve over time. Note that the
shape of the fitness landscape changes drastically as the
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Fig. 9. This diagram shows the fitness surface for two species with
“fair-trade enforced” at the evolutionary equilibrium (endpoint). We
can see that the fitness is maximized and that fitness is zero at this
point. Both surfaces are identical so it appears that there is only one
surface.

strategies (p) and densities (N, M) of the two species
change. Only when there is enforcement of fair-trade
do we see that an ESS is reached. This same ESS is
reached from a wide range of initial conditions and
appears to be a global ESS attractor.

5. Discussion

The results demonstrate that coevolving mutualisms
between species face the same challenge found in the
evolution of altriuism (cooperation) within a single
species. This challenge takes the form of the Pris-
oner’s dilemma—each player (species in the case of
this paper) benefits from having a cooperative partner,
but always does better by cheating regardless of the
partner’s behavior, leading to cheating being the opti-
mal strategy.

It has often been assumed that coevolution of mu-
tualisms will be similar in nature to the evolution of
altruism (e.g.,Szathmary and Maynard Smith, 1995).
But it is not obvious that it must be so because un-
like cooperating memembers of one species, mutual-
ists never share any genes. Thus, mechanisms such as
kin selection (Hamilton, 1964) are not viable. Even
the closely related mechanism of vertical transmission
does not apply to facultative mutualisms (Wilkinson,
2001). Similarly, the difference in generation times

may require great modification to the notion of recipro-
cal altruism (Trivers, 1971; Bergstrom and Lachmann,
2003).

A number of mechanisms first discussed in the
evolution of altruism have been proposed to allow mu-
tualist partners get over the hump represented by the
Prisoner’s dilemma. Many of these mechanisms are
closely related. The first mechanism is based on the
idea of partner choice (Wilkinson, 2001; Ferriere et al.,
2002), similar to results found in intraspecific evolu-
tion of altruism (Michod and Sanderson, 1985; Sig-
mund and Nowak, 1998). The closely related idea of
punishment or sanctions (Denison, 2000; Kiers et al.,
2003) has also been suggested (it is a fine line between
choosing partners and punishing cheating partners).

This paper suggests that a third mechanism com-
monly identified as a source of altruism (Ratnieks,
1988) might also apply to coevolution of mutualisms,
namely policing. Policing is when some external force
or party enforces fair trading (i.e., no cheating). It
differs from the mechanisms of partner choice and
cheating punishers in that the “enforcer” is not directly
involved in the interaction. In modern human societies
police and the legal system perform this function. The
results in this paper show that when thep for each
species is linked in a monotonically increasing fash-
ion with thep for the other species (i.e., fair-trade is
enforced), then a mutualism can coevolve.

It might be hard to imagine what could be perform-
ing the policing and enforcing a coupling of thep-
v ple
l wn
f to
c ol-
l re-
w ting
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m ce-
m x-
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i ses
c on
t als
( hic
m cell
w de.
I t is
p tic
alues. I suggest that in most mutualisms it is sim
aws of physics and geometry. For an example dra
rom outside bitrophic mutualisms, a pollinator has
rawl past the stamens, unavoidably performing p
ination in order to reach the nectar, which is its
ard (unless of course it expends the energy of ea

hrough the flower). More specifically, within bitroph
utualisms, the most likely mechanism for enfor
ent of fair-trade is simple osmosis. All of the e
mples given of facultative, bitrophic mutualisms li

n intimate symbiotic connection and osmosis cau
hemicals to flow from regions of high concentrati
o regions of low concentration. Most of the chemic
e.g., sugars, mineral ions) that are traded in bitrop
utualisms are small enough to pass through the
all. Hence, osmosis would indeed enforce fair-tra

f a species creates an interface to its partner tha
orous enough to allow beneficial goods in via osmo
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Fig. 10. This diagram shows the evolution of the fitness surface over time (with time going from left to right, then top to bottom). The asterisk
represents the state of the population at each point. We can see that when the system starts at low densities the fitness surface is almost flat. Once
the population grows enough for density dependence to kick in, there is a clear slope to the fitness surface and the population evolves “uphill”
until it reaches a maximum. These diagrams represent evolution without “fair-trade enforcement” and the system evolves to no mutualism (p = 0).

Fig. 11. Similar to the previous figure, but now the evolutionary trait,p, is subject to “fair-trade enforcement” and the population evolves to an
interior (mutualistic equilibrium) which is an ESS (frequency dependent fitness maximum). Although difficult to see, in the first frame when the
plotted species is low in abundance but the partner species is high in abundance, the fitness surface actually slopes up and to the right slightly
(i.e.,p would increase initially).
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imbalance, then anything it has in excess is likely to
leave to its partner through this same porous interface.
Although little is known about the actual transfer of
nutrients in the mutualisms I model here, simple osmo-
sis is believed to play a central role (Smith and Douglas,
1987).

Finally, the population dynamics and coevolution
model results also showed that the conditions for com-
parative advantage (one species having one resource
in abundance that the other species is depauperate in
and vice versa) appear to be necessary for mutual-
ism to coevolve (see alsoHoeksema and Schwartz,
2003). This data shows that the benefits of a mutu-
alism are conditional on the differential availability of
resources. This theoretical prediction is directly sup-
ported by experiments on both legumes/rhizobium and
plants/mycorrhizae that show that the benefits of a mu-
tualism are heavily dependent on the availability in the
ambient environment of the resource that it receives
from the mutualist (de Wit et al., 1966; Stribley et al.,
1980). The role of productivity gradients on coevolu-
tion of mycorrhizal mutualisms has also been explored
theoretically (Neuhauser and Fargione, 2004).

There are at least two methodological advances
in this paper relative to many previous studies on
the population dynamics and coevolution of bitrophic
mutualisms. First, this paper develops a new type of
mechanistic explanation based on resource limitation
for stable population dynamics in mutualistic species,
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and it probably does not apply in any case to obligate
mutualisms. The second major limitation is in the ap-
plication of the ESS game theory, where it was assumed
that there were exactly two species. The dynamics un-
der conditions of a three or more species were not ex-
amined. This of course starts to blend into the models
of partner choice cited earlier.
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